Skip to main content
Log in

First-Principles Simulation of Structural, Electronic and Optical Properties of Cerium Trisulfide (Ce2S3) Compound

  • Asian Consortium ACCMS–International Conference ICMG 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the structural, electronic and optical properties of Ce2S3 compound have been explored using CASTEP simulation code. We explore the crystal structure, lattice parameters, electronic band structure, the total density of states (TDOS), the partial density of states (PDOS) and the optical functions of the Ce2S3 compound using first-principles simulation based on density functional theory (DFT). The orthorhombic crystal structure with space group (Pnma) of Ce2S3 is stable both chemically and structurally. The lattice parameters of this compound are obtained by the optimization method. The lattice parameters measured in this study (a = 7.53 Å, b = 4.10 Å and c = 15.73 Å) indicate excellent agreement with experimental and previous theoretical results. The electronic properties are investigated using Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and GGA  observe  U approaches within DFT employing CASTEP code. The energy bandgap value reported in this study (Eg = 0.76 eV) is comparable to the previous theoretical value. This energy bandgap value shows that Ce2S3 belongs to the semiconductor category. The frequency-dependent dielectric function and some optical properties such as reflectivity, absorption coefficient, optical dielectric constant, optical conductivity and the energy loss function have also been calculated in the present work. The optical reflectivity is noted to be maximum in the ultraviolet region of the electromagnetic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Eastman, L. Brewer, L.A. Bromley, P.W. Gilles, and N.L. Lofgren, J. Am. Chem. Soc. 72, 2248 (1950).

    Article  CAS  Google Scholar 

  2. J. Flahaut and M. Guittard, Comptesrendus 243, 1419 (1956).

    CAS  Google Scholar 

  3. T. Takeshita, K.A. GschneidnerJr, and B.J. Beaudry, J. Appl. Phys. 57, 4633 (1985).

    Article  CAS  Google Scholar 

  4. C.M. Forster and W.B. White, J. Am. Ceram. Soc. 80, 273 (1997).

    Article  Google Scholar 

  5. C.M. Forster and W.B. White, Mater. Res. Bull. 41, 448 (2006).

    Article  CAS  Google Scholar 

  6. J.M. Tomczak, L.V. Pourovskii, L. Vaugier, A. Georges, and S. Biermann, PNAS 110, 904 (2012).

    Article  Google Scholar 

  7. H.M. Smith, eds., High Performance Pigments, Vol. 4 (Darmstadt: Wiley-VCH, 2002), p. 27.

    Google Scholar 

  8. I.A. Kariper, Prog. Nat. Sci. Mater. Int. 24, 663 (2014).

    Article  CAS  Google Scholar 

  9. I.A. Kariper, Mater. Res. 20, 1345 (2017).

    Article  CAS  Google Scholar 

  10. S. Roméro, A. Mosset, P. Macaudière, and J.C. Trombe, J. Alloys Compd. 302, 118 (2000).

    Article  Google Scholar 

  11. F. Marrot, A. Mosset, J.C. Trombe, P. Macaudière, and P. Maestro, J. Alloys Compd. 259, 145 (1997).

    Article  CAS  Google Scholar 

  12. S. Hirai, K. Shimakage, Y. Saitou, and L. Brewer, J. Am. Ceram. Soc. 81, 145 (1998).

    Article  CAS  Google Scholar 

  13. P. Maestro and D. Huguenin, J. Alloys Compd. 225, 520 (1995).

    Article  CAS  Google Scholar 

  14. Y. Ding, J. Gu, T. Zhang, A.X. Yin, L. Yang, Y.W. Zhang, and C.H. Yan, JACS 134, 3255 (2012).

    Article  CAS  Google Scholar 

  15. W. Dongri, Z. Yongqing, and Y. Shiyong, J. Rare Earths 35, 1042 (2017).

    Article  Google Scholar 

  16. P. Hogan, High Temperature Synthesis of Sulphides of Cerium and Thermodynamic System Modeling, Master Thesis, University of Florida, 2002.

  17. K. Gibbard, High Temperature Syntesis of Cerium Sulphides and Kinetic Modeling, Master of Science Thesis, University of Florida, 2005.

  18. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Haspani, P.J.H. Matt, K. Refson, M.C. Pyne, and Z. Kristallogr, Cryst. Mater. 220, 567 (2005).

    CAS  Google Scholar 

  19. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  20. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  21. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  22. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  23. R. Windiks, E. Wimmer, L. Pourovskii, S. Biermann, and A. Georges, J. Alloys Compd. 459, 438 (2007).

    Article  Google Scholar 

  24. T. Schleid and P. Lauxmann, J. Inorg. G. Chem. 625, 1053 (1999).

    CAS  Google Scholar 

  25. D.C. Ambrosch and J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006).

    Article  Google Scholar 

  26. M. Fox, Optical Properties of Solids (Oxford: Oxford University Press, 2001).

    Google Scholar 

  27. F. Wooten, Optical Properties of Solids (London: Academic Press, 1972).

    Google Scholar 

  28. H. Wang, Y.F. Wang, X.W. Cao, L. Zhang, M. Feng, and G.X. Lan, Phys. Stat. Sol. B. 246, 437 (2009).

    Article  CAS  Google Scholar 

  29. S. Saha and T.P. Sinha, Phys. Rev. B. 62, 8828–8834 (2000).

    Article  CAS  Google Scholar 

  30. A. Radzwan, R. Ahmed, A. Shaari, A. Lawal, Y. N. Malays, J. Fundam, Appl. Sci. 13, 285 (2017).

    Google Scholar 

  31. X. Zhang, D. Rao, R. Lu, K. Deng, and D. Chen, AIP Adv. 5, 057111 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. M. Arif Khalil or Fayyaz Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif Khalil, R.M., Hussain, M.I., Imran, M. et al. First-Principles Simulation of Structural, Electronic and Optical Properties of Cerium Trisulfide (Ce2S3) Compound. J. Electron. Mater. 50, 1637–1643 (2021). https://doi.org/10.1007/s11664-020-08478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08478-z

Keywords

Navigation