Skip to main content

Advertisement

Log in

Impact of Cryogenic Temperature Environment on Single Solder Joint Mechanical Shear Stability

  • TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although the performance of electronic devices in extreme temperature ranges has been extensively studied, the interconnections, which are still mainly Sn-based materials, require thorough observation and assessment to support the mechanical and electrical stability in subzero to cryogenic temperature environments. An in-depth assessment is required because of the nature of Sn, which has a ductile-to-brittle transition temperature of approximately −60°C. Sn-1Ag-0.5Cu (wt.%) (SAC105) solder joints were subjected to shear testing at room temperature and at −196°C at liquid nitrogen temperature. Isothermal aging at 150°C for 50–500 h prior to cryogenic temperature testing indicated further degradation under certain aging conditions. The study presented here investigates the maximum shear strength variations for SAC105 single solder joints with NiAu and Cu-organic solderability preservative (Cu-OSP) pad surface finishes using a multibond tester with a 10-μm shear height and 100-μm/s shear speed. An increase in the maximum shear strength was observed at liquid nitrogen temperature compared to that at room temperature due to an increase in the yield strength and loss in ductility of the solder material in response to the low-temperature environment. The maximum shear strength decreased with isothermal aging due to the crack propagation path variation. Fracture locations were identified between the Ni pad and the (Cu, Ni)6Sn5 interface for the NiAu surface finish components, and Cu-OSP surface finish solder joints revealed transgranular crack through the Cu6Sn5 and crack propagation between the Cu6Sn5 and the solder interface. The shift in the full fracture location is discussed in association with electron backscatter diffraction (EBSD) analysis on partially sheared solder joints at room temperature and at −196°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bayer, M. Bittner, B. Buffington, G. Dubos, E. Ferguson, I. Harris, M. Jackson, G. Lee, K. Lewis, J. Kastner, R. Morillo, R. Perez, M. Salami, J. Signorelli, O. Sindiy, B. Smith, M. Soriano, K. Kirby, and N. Laslo, in IEEE Aerospace Conference proceedings (Big Sky, MT, US 2019), pp. 1–24

  2. Mission to Europa: Europa Clipper (JPL webpage), https://www.jpl.nasa.gov/missions/europa-clipper/. Accessed 25 August 2020.

  3. E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser, L. Song, and R.M. Incandela, in IEEE International Electron Devices Meeting (IEDM) proceedings, (San Francisco, CA, 2016) pp. 13.5.1–13.5.4.

  4. A. Lupinacci, A. Shapiro, J. Suh, and A. Minor, in IEEE International Symposium on Advanced Packaging Materials proceedings (2013), pp. 82–88

  5. P. Ratchev, B. Vandevelde, and B. Verlinden, IEEE Trans. Compon. Packag. Technol. 30, 416 (2007).

    Article  CAS  Google Scholar 

  6. Q. An, C. Wang, X. Zhao, and H. Wang, in 18th International Conference on Electronic Packaging Technology proceedings (ICEPT), Harbin, China (2007), pp. 1233–1237.

  7. K. Lambrinou, W. Maurisse, P. Limaye, B. Vandevelde, B. Verlinden, and I. Wolf, J. Electron. Mater. 38, 1881 (2009).

    Article  CAS  Google Scholar 

  8. T.-K. Lee, B. Zhou, T. Bieler, and K.-C. Liu, J. Electron. Mater. 41, 273 (2012).

    Article  CAS  Google Scholar 

  9. T.-K. Lee, C.-U. Kim, and T. Bieler, J. Electron. Mater. 43, 69 (2014).

    Article  CAS  Google Scholar 

  10. T.-K. Lee, C.-U. Kim, and T. Bieler, J. Electron. Mater. 45, 171 (2016).

    Google Scholar 

  11. R. Tian, Y. Tian, C. Wang, and L. Zhao, Mat. Sci. Eng. A 684, 697 (2017).

    Article  CAS  Google Scholar 

  12. P. Ratchev, T. Loccufier, B. Vandevelde, B. Verlinden, S. Teliszewski, D. Werkhoven, and B. Allaert, in IMAPS Eur. Microelectron. Pack. Conf. proceedings, Brugge, Belgium (2005), pp. 248–252

  13. C. Tseng, T.-K. Lee, G. Ramakrishna, K. Liu, and J. Duh, Mater. Lett. 65, 3216 (2011).

    Article  CAS  Google Scholar 

  14. S. Fu, C. Yu, T. Lee, K. Liu, and J. Duh, Mater. Lett. 80, 103 (2012).

    Article  CAS  Google Scholar 

  15. F. Gao and T. Takemoto, Mater. Lett. 60, 2315 (2006).

    Article  CAS  Google Scholar 

  16. D. Mu, H. Huang, and K. Nogita, Mater. Lett. 86, 46 (2012).

    Article  CAS  Google Scholar 

  17. J. Xian, Z. Ma, S. Belyakov, M. Ollivier, and C. Gourlay, Acta Mater. 123, 404 (2017).

    Article  CAS  Google Scholar 

  18. G. Zeng, S. McDonald, J. Read, Q. Gu, and K. Nogita, Acta Mater. 69, 135 (2014).

    Article  CAS  Google Scholar 

  19. S. Wright, N. Nowell, and D. Field, Microsc. Microanal. 17, 316 (2011).

    Article  CAS  Google Scholar 

  20. S. Jin, W. Horwood, J.W. Morris Jr, and V. Zackay, Adv. Cryog. Eng. 19, 373 (1995).

    Article  Google Scholar 

  21. J.W. Morris Jr, C. Lee, and Z. Guo, ISIJ Int. 43, 410 (2003).

    Article  CAS  Google Scholar 

  22. J.W. Morris Jr, Science 320, 1022 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is an outcome of a research collaboration project between Portland State University and Nordson Dage. The authors also want to thank Tony Chen and Greg Baty in the Center of Electron Microscopy and Nanofabrication (CEMN) at Portland State University for their technical support on EBSD imaging and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Kyu Lee.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitamura, A., Matthews, T., Contreras, R. et al. Impact of Cryogenic Temperature Environment on Single Solder Joint Mechanical Shear Stability. J. Electron. Mater. 50, 723–734 (2021). https://doi.org/10.1007/s11664-020-08456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08456-5

Keywords

Navigation