Skip to main content
Log in

Effect of Active Al on the Microstructure and Mechanical Properties of a Mo/Sn-Based Solder Interface: First-Principles Calculation and Experimental Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, Sn-based active alloys were used to solder a Mo electrode and Al together, and the effect of active Al on the Mo/solder interface was studied with methods of first-principles calculation and experiments. The Mo(110)/Sn(001) interface with bridge site was found to have the largest work of adhesion (Wad). The heat of segregation (ΔGseg) results reveal that Al atoms prefer to diffuse to the interface and form bonds with Mo, resulting in the Al-Mo intermetallic compound (IMC) layer. When two Al atoms appear at the interface, the value of Wad increases to 3.02 J/m2 dramatically, which indicates that Al strengthens the Mo/Sn interface. Then pure Sn, Sn-9Zn, Sn-9Zn-2Al, and Sn-13.5Zn-10Al alloys were prepared to solder Mo and Al assisted by ultrasound. Pure Sn and Sn-Zn solders have weak bonding with Mo, and the joints fractured from the interface with very low strength. When the Sn-9Zn-2Al and Sn-13.5Zn-10Al solders were used, the active Al segregated to the interface and reacted with Mo. The interface was strengthened by the Al-Mo IMC layer. The joints fractured inside the solder layer, and the shear strength of joints using Sn-13.5Zn-10Al reached 35 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Lu, R. Jin, Y. Liu, L. Guo, X. Liu, J. Liu, K. Cheng, and Z. Du, Mater. Lett. 204, 53 (2017).

    CAS  Google Scholar 

  2. A. Gerthoffer, C. Poulain, F. Roux, L. Grenet, and S. Perraud, Sol. Energy Mater. Sol. Cells 166, 254 (2017).

    CAS  Google Scholar 

  3. D. Zhou, H. Zhu, X. Liang, C. Zhang, Z. Li, and Y. Xu, Appl. Surf. Sci. 362, 202 (2016).

    CAS  Google Scholar 

  4. M.T. Zarmai, N.N. Ekere, and C.F. Oduoza, Appl. Energy 154, 173 (2015).

    CAS  Google Scholar 

  5. P. Schmitt, D. Eberlein, C. Ebert, M. Tranitz, U. Eitner, and H. Wirth, Energy Procedia 38, 380 (2013).

    CAS  Google Scholar 

  6. J. Du, X. Chen, X. Jia, Y. Huang, Z.N. Wang, and Y. Liu, Mater. Sci. Eng., A 743, 675 (2019).

    CAS  Google Scholar 

  7. L. Li, J. Zhang, X. Pan, Y. Huang, Z. Wang, and Y. Liu, RSC Adv. 7, 5376 (2017).

    Google Scholar 

  8. W. Guo, T. Luan, J. He, and J. Yan, Ultrason. Sonochem. 40, 815 (2018).

    CAS  Google Scholar 

  9. W. Guo, X. Leng, T. Luan, J. Yan, and J. He, Ultrason. Sonochem. 36, 354 (2017).

    CAS  Google Scholar 

  10. W. Cui, J. Yan, and Y. Dai, Ultrason. Sonochem. 22, 108 (2015).

    CAS  Google Scholar 

  11. X. Chen, J. Yan, F. Gao, J. Wei, Z. Xu, and G. Fan, Ultrason. Sonochem. 20, 144 (2013).

    CAS  Google Scholar 

  12. H. Xue, X. Wei, W. Guo, and X. Zhang, J. Alloys Compd. 820, 153070 (2020).

    CAS  Google Scholar 

  13. H. Mavoori, A.G. Ramirez, and S. Jin, Appl. Phys. Lett. 78, 2976 (2001).

    CAS  Google Scholar 

  14. J. Liu, X. Zhang, M. Chen, L. Li, and B. Zhu, Appl. Surf. Sci. 257, 4004 (2011).

    CAS  Google Scholar 

  15. M.N. Popov, J. Spitaler, M. Mühlbacher, and C. Walter, Phys. Rev. B 86, 205309 (2012).

    Google Scholar 

  16. T. Liao, J. Wang, and Y. Zhou, Phys. Rev. B 73, 214109 (2006).

    Google Scholar 

  17. J. Li, Y. Yang, L. Li, J. Lou, X. Luo, and B. Huang, J. Appl. Phys. 113, 023516 (2013).

    Google Scholar 

  18. H.Z. Zhang, L.M. Liu, and S.Q. Wang, Comput. Mater. Sci. 38, 800 (2007).

    Google Scholar 

  19. Z.J. Wang, S. Liu, Z.X. Qiu, H.Y. Sun, and W.C. Liu, Appl. Surf. Sci. 505, 144502 (2020).

    CAS  Google Scholar 

  20. C.P. Liang, J.L. Fan, H.R. Gong, X. Liao, X. Zhu, and S. Peng, Appl. Phys. Lett. 103, 211604 (2013).

    Google Scholar 

  21. Q. Wu, J. Xie, C. Wang, L. Li, A. Wang, and A. Mao, Surf. Sci. 670, 1 (2018).

    CAS  Google Scholar 

  22. G. Feldbauer, M. Wolloch, P.O. Bedolla, P. Mohn, J. Redinger, and A. Vernes, Phys. Rev. B 91, 165413 (2015).

    Google Scholar 

  23. Y. Liu, G. Shao, and P. Tsakiropoulos, Intermetallics 8, 953 (2000).

    CAS  Google Scholar 

  24. W. Guo, Z. She, H. Xue, and X. Zhang, Ceram. Int. 46, 5430 (2020).

    Google Scholar 

  25. W. Guo, X. Leng, J. Yan, and Y. Tan, Weld. J. 94, 189 (2015).

    Google Scholar 

  26. Q.L. Wu, C.D. Yang, F. Xue, and Y.S. Sun, Mater. Des. 32, 4999 (2011).

    CAS  Google Scholar 

  27. I.S. Lee, P.W. Kao, C.P. Chang, and H.J. Ho, Intermetallics 35, 9 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Science and Technology Research Project of Hebei Province Colleges and Universities (QN2019028), Natural Science Foundation of Hebei Province (E2019202 407) and ‘‘Yuan Guang Scholar’’ Plan of Hebei University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Guo, W., Xue, H. et al. Effect of Active Al on the Microstructure and Mechanical Properties of a Mo/Sn-Based Solder Interface: First-Principles Calculation and Experimental Study. J. Electron. Mater. 49, 6754–6762 (2020). https://doi.org/10.1007/s11664-020-08429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08429-8

Keywords

Navigation