Skip to main content
Log in

The Obstruction Effect of Ni Layer on the Interdiffusion of Cu Substrate and Sn Solder: A Theoretical Investigation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The protective effect of a Ni layer on Cu-Sn solder joints was investigated from the perspective of interface diffusion. The results indicate that temperature is the primary external factor affecting interfacial diffusion, and the effect of external load also has an influence. Atom diffusion is promoted by the increasing temperature and applied compressive load perpendicular to the interface. In contrast, the tensile load perpendicular to the interface inhibited the diffusion behavior. Ni atoms at both the Ni/Cu and Ni/Sn interfaces act as the main diffusion factor and play a vital role in the growth and evolution of the diffusion layer. Because of the high stability of the Ni lattice and the large radii of Cu and Sn atoms, it is difficult for Cu and Sn atoms to migrate to the Ni atoms, which effectively delays the contact and reaction between Cu and Sn. To reveal the micro-mechanism of the diffusion, the diffusion coefficient and activation energy were studied. Ni atoms need more energy than Cu and Sn atoms to drive the diffusion, which delays the consumption of Ni and helps to maintain the Ni layer. The single vacancy formation energy of the Ni lattice is the largest, which means that it is difficult for Cu and Sn atoms to migrate into the lattice. By comparing the atomic diffusion rate, the final formation of Cu-Sn intermetallic compounds in the Ni layer on the side of tin-based solder was predicted at a macroscopic time scale. Using density functional calculation, the slight lattice distortion of the interfaces was measured. The analysis of charge transfer and electronic properties show that a strong electron transfer and energy level overlap occurs between the Ni and Cu atoms, implying that the Ni/Cu interface has a more considerable electronic thermal conductivity and should be more sensitive to the increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Jiang, L. Zhang, Z.Q. Liu, L. Sun, W.M. Long, P. He, M.Y. Xiong, and M. Zhao, Sci. Technol. Adv. Mater. 20, 876 (2019).

    CAS  Google Scholar 

  2. D.J. Lee and H.S. Lee, Microelectron. Reliab. 46, 1119 (2006).

    CAS  Google Scholar 

  3. H. Lee, C. Kim, C. Heo, C. Kim, J.H. Lee, and Y. Kim, Microelectron. Reliab. 87, 75 (2018).

    CAS  Google Scholar 

  4. Y.S. Kim, S.H. Kim, J.W. Shin, K.W. Paik, and I.E.E.E.T. Comp, Pack. Man. 5, 1350 (2015).

    CAS  Google Scholar 

  5. C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).

    CAS  Google Scholar 

  6. P. Lall, S. Shantaram, J. Suhling, and D. Locker, J. Electron. Packag. 137, 011010 (2015).

    Google Scholar 

  7. D. Kim, J.Y. Chang, J. Park, and J.J. Pak, J. Mater. Sci.: Mater. Electron. 22, 703 (2011).

    CAS  Google Scholar 

  8. A.D. Smigelskas and E.O. Kirdendall, Trans. AIME 171, 130 (1947).

    Google Scholar 

  9. F. Seitz, Acta Metall. 1, 355 (1953).

    CAS  Google Scholar 

  10. A.E. Pazy and D.C. Dunand, Intermetallic 117, 106634 (2020).

    Google Scholar 

  11. C. Yu, J.S. Chen, Z.W. Cheng, Y.Q. Huang, J.M. Chen, J.J. Xu, and H. Xu, J. Alloys Compd. 66, 80 (2015).

    Google Scholar 

  12. Y. Zhao, K. Wang, S. Yuan, Y.H. Ma, G.J. Li, and Q. Wang, J. Mater. Sci. Technol. 46, 127 (2020).

    Google Scholar 

  13. K. Zeng, R. Stierman, T.C. Chiu, and D. Edwards, J. Appl. Phys. 97, 024508 (2005).

    Google Scholar 

  14. L. Xu, J. Pang, and F. Che, J. Electron. Mater. 37, 880 (2008).

    CAS  Google Scholar 

  15. P. Sun, C. Andersson, X.C. Wei, Z.N. Cheng, D. Shangguan, and J. Liu, Mater. Sci. Eng., B 135, 134 (2006).

    CAS  Google Scholar 

  16. J.S. Chen, J. Yang, Y.Z. Zhang, Z.S. Yu, and P.L. Zhang, Weld. World 63, 751 (2019).

    CAS  Google Scholar 

  17. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng., R 49, 1 (2005).

    Google Scholar 

  18. C. Yu, Y. Yang, K.Y. Wang, J.J. Xu, J.M. Chen, and H. Lu, J. Mater. Sci.: Mater. Electron. 23, 124 (2012).

    CAS  Google Scholar 

  19. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci.: Mater. Electron. 18, 155 (2007).

    CAS  Google Scholar 

  20. Y.W. Wang, Y.W. Lin, and C.R. Kao, Reliability 49, 248 (2009).

    CAS  Google Scholar 

  21. S.S. Chee and J.H. Lee, Electron. Mater. Lett. 10, 637 (2014).

    CAS  Google Scholar 

  22. J.W. Yang, J. Zhang, and J. Qiao, Materials 12, 2306 (2019).

    CAS  Google Scholar 

  23. Y.Q. Zhang and S.Y. Jiang, Materials 11, 1967 (2018).

    Google Scholar 

  24. M. Baksi, D. Toffoli, O. Gulseren, and H. Ustunel, J. Phys. Chem. C 123, 28411 (2019).

    CAS  Google Scholar 

  25. R. Freitas, M. Asta, and M. de Koning, Comput. Mater. Sci. 112, 333 (2016).

    CAS  Google Scholar 

  26. A.I. Khan, R. Paul, and S. Subrina, RSC Adv. 7, 50485 (2017).

    CAS  Google Scholar 

  27. M. Motalab, R. Paul, S. Saha, S. Mojumder, T. Ahmed, and J.C. Suhling, J. Mol. Model. 25, 59 (2019).

    CAS  Google Scholar 

  28. M. Wouters, J. Tempere, and J.T. Devreese, Phys. Rev. A 66, 043414 (2002).

    Google Scholar 

  29. J.A. Snyman, Comput. Math Appl. 40, 1085 (2000).

    Google Scholar 

  30. C. Li, D.X. Li, X.M. Tao, H.M. Chen, and Y.F. Ouyang, Modell. Simul. Mater. Sci. Eng. 22, 065013 (2014).

    Google Scholar 

  31. N. Kaur, C. Deng, and O.A. Ojo, Comput. Mater. Sci. 179, 109685 (2019).

    Google Scholar 

  32. M. Wang, H.S. Liu, R.C. Wang, and J. Peng, Mater. Sci. Eng. A 773, 138738 (2020).

    CAS  Google Scholar 

  33. B. Onat and S. Durukanoglu, J. Phys.: Condens. Matter 26, 035404 (2014).

    Google Scholar 

  34. L.H. Li, W.L. Wang, and B. Wei, Comput. Mater. Sci. 99, 274 (2015).

    CAS  Google Scholar 

  35. A.V. Pham, T.H. Fang, A.S. Tran, and T.H. Chen, Superlattice. Microstruct. 139, 106402 (2020).

    CAS  Google Scholar 

  36. Y. Wang, N.S. Jiang, K.M. Miu, and Y. Wu, Comput. Mater. Sci. 171, 109272 (2020).

    CAS  Google Scholar 

  37. Y. Yang, Y.A. Lin, X.Y. Yan, C. Fei, Q. Shen, L.M. Zhang, N. Yan, and A.C.S. Appl, Energy Mater. 2, 8894 (2019).

    CAS  Google Scholar 

  38. J.R. Vella, M. Chen, F.H. Stillinger, E.A. Carter, P.G. Debenedetti, and A.Z. Panagiotopoulos, Phys. Rev. B 95, 064202 (2017).

    Google Scholar 

  39. M. Wang, H.S. Liu, R.C. Wang, and J. Peng, Mater. Sci. Eng. A 773, 138738 (2020).

    CAS  Google Scholar 

  40. W.W. Zhang, Y. Ma, W. Zhou, and P. Wu, J. Electron. Mater. 48, 4533 (2019).

    CAS  Google Scholar 

  41. X.Y. Bi, X.W. Hu, X.X. Jiang, and Q.L. Li, Vacuum 164, 7 (2019).

    CAS  Google Scholar 

  42. Z. Mao, J.S. Li, S.J. Dong, X. Lin, X.D. Jian, and P. Wu, Phys. E 120C, 113983 (2020).

    Google Scholar 

  43. K. Bruke, J.P. Perdew, and M. Ernzerhof, J. Chem. Phys. 109, 3760 (1998).

    Google Scholar 

  44. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    CAS  Google Scholar 

  45. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Google Scholar 

  46. J.C. Slater, J. Chem. Phys. 41, 3199 (1964).

    CAS  Google Scholar 

  47. J.C. Zhang, J. Yang, L.H. Liang, Y.J. Xu, and J. Guo, Mol. Phys. 116, 99 (2018).

    CAS  Google Scholar 

  48. F. Gao and J.M. Qu, Mater. Lett. 73, 92 (2012).

    CAS  Google Scholar 

  49. C.A. Mackliet, Phys. Rev. 109, 1964 (1958).

    CAS  Google Scholar 

  50. O. Taguchi, Y. Lijima, and K.I. Hirano, J. Jpn. Inst. Met. 48, 20 (1984).

    CAS  Google Scholar 

  51. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).

    CAS  Google Scholar 

  52. R. Labie, W. Ruythooren, and J. van Humbeeck, Intermetallics 15, 396 (2007).

    CAS  Google Scholar 

  53. K.P.L. Pun, M.N. Islam, J. Rotanson, C.W. Cheung, and A.H.S. Chan, J. Electron. Mater. 47, 5191 (2018).

    CAS  Google Scholar 

  54. J. Bai, N. Xu, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, J. Appl. Phys. 113, 174901 (2013).

    Google Scholar 

  55. C. Woodward, S. Kajihara, and L.H. Yang, Phys. Rev. B 57, 13459 (1998).

    CAS  Google Scholar 

  56. Y.J. Li, Q.M. Hu, D.S. Xu, and R. Yang, Intermetallics 19, 793 (2011).

    CAS  Google Scholar 

  57. M. Mazalová, M. Všianská, J. Pavlů, and M. Šob, Nanomaterials 10, 691 (2020).

    Google Scholar 

  58. J.M. Zhang, X.L. Song, X.J. Zhang, and K.W. Xu, J. Phys. Chem. Solids 67, 714 (2006).

    CAS  Google Scholar 

  59. A. Lavasani, D. Bulmash, and S. das Sarma, Phys. Rev. B 99, 085104 (2019).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Zhang or Ping Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Zhang, W., Li, J. et al. The Obstruction Effect of Ni Layer on the Interdiffusion of Cu Substrate and Sn Solder: A Theoretical Investigation. J. Electron. Mater. 49, 6559–6571 (2020). https://doi.org/10.1007/s11664-020-08421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08421-2

Keywords

Navigation