Skip to main content
Log in

All-Printed Flexible Electrochemical Sensor Based on Polyaniline Electronic Ink for Copper (II), Lead (II) and Mercury (II) Ion Determination

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrochemical determination of copper (II), lead (II) and mercury (II) ions has been studied and analyzed in this paper. Preparation of polyaniline functional ink by electronic ink technology was proposed. Screen-printed carbon electrode (SPCE) modified by ethylene diamine tetraacetic acid @ polyaniline/multi-walled carbon nanotube nanocomposite structure was used as an electrochemical sensor by all-printed technology to selectively detect copper, lead and mercury ions. The improved electrode is a great improvement in process simplicity and practicability. Square-wave voltammetry was used to detect the concentration of copper, lead and mercury ions, and the selectivity, sensitivity, reproducibility and stability of the ions were also studied. The detection results show that the modified SPCE electrode has high selectivity, sensitivity and reproducibility. The detection limit of copper ions was determined as 55.4 pM, that of lead ions was 22 pM, and that of mercury ions was 17.8 pM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chaiyo, E. Mehmeti, W. Siangproh, O. Chailapakul, and K. Kalcher, Anal. Chim. Acta 918, 26 (2016).

    CAS  Google Scholar 

  2. Z. Dahaghin, P.A. Kilmartin, and H. Mousavi, Food Chem. 303, 125374 (2020).

    CAS  Google Scholar 

  3. N. Sugawara, C. Sugawara, M. Sato, H. Takahashi, and M. Mori, Pharmacol. Toxicol. 71, 321 (1992).

    CAS  Google Scholar 

  4. S. Lal, K. Prakash, S. Hooda, V. Kumar, and P. Kumar, J. Mol. Struct. 1199, 127003 (2020).

    CAS  Google Scholar 

  5. X. Wang, X. Ma, J. Wen, Z. Geng, and Z. Wang, Talanta 207, 120311 (2020).

    CAS  Google Scholar 

  6. T. Ahmadi, S. Bahar, G. Mohammadi Ziarani, and A. Badiei, Food Chem. 300, 125180 (2019).

    CAS  Google Scholar 

  7. Y. Guo, J. Li, X. Zhang, and Y. Tang, Analyst 140, 4642 (2015).

    CAS  Google Scholar 

  8. Z. Khoshbin, M.R. Housaindokht, A. Verdian, and M.R. Bozorgmehr, Biosens. Bioelectron. 116, 130 (2018).

    CAS  Google Scholar 

  9. D. Yu, H. Zhang, L. Bai, Y. Fang, C. Liu, H. Zhang, T. Li, L. Han, Y. Yu, H. Yu, and S. Dong, Sens. Actuator B 302, 127177 (2020).

    CAS  Google Scholar 

  10. L.L.G. de Oliveira, G.O. Ferreira, F.A.C. Suquila, F.G. de Almeida, L.A. Bertoldo, M.G. Segatelli, E.S. Ribeiro, and C.R.T. Tarley, Food Chem. 294, 405 (2019).

    Google Scholar 

  11. Z. Wang, D. Wu, G. Wu, N. Yang, and A. Wu, J. Hazard. Mater. 244–245, 621 (2013).

    Google Scholar 

  12. E.L. Silva and P.D.S. Roldan, J. Hazard. Mater. 161, 142 (2009).

    CAS  Google Scholar 

  13. M. Shellaiah, T. Simon, P. Venkatesan, K.W. Sun, F. Ko, and S. Wu, Microchim. Acta 185, 74 (2018).

    Google Scholar 

  14. J. Liu, H. Xue, Y. Liu, T. Bu, P. Jia, Y. Shui, and L. Wang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 223, 117364 (2019).

    CAS  Google Scholar 

  15. M.C. Talio, V. Muñoz, M. Acosta, and L.P. Fernández, Food Chem. 298, 125049 (2019).

    CAS  Google Scholar 

  16. Y. Cao, J. Feng, L. Tang, C. Yu, G. Mo, and B. Deng, Talanta 206, 120174 (2020).

    CAS  Google Scholar 

  17. M. Wang, H. Ma, Q. Chi, Q. Li, M. Li, H. Zhang, C. Li, and H. Fang, Microchim. Acta 186, 537 (2019).

    Google Scholar 

  18. H. Lv, Z. Teng, S. Wang, K. Feng, X. Wang, C. Wang, and G. Wang, Sens. Actuator B 256, 98 (2018).

    CAS  Google Scholar 

  19. J. Arjomandi, N. Keramat Irad Mossa, and B. Jaleh, J. Appl. Polym. Sci. 132, 41526 (2015).

    Google Scholar 

  20. Z. Xu, X. Fan, Q. Ma, B. Tang, Z. Lu, J. Zhang, G. Mo, J. Ye, and J. Ye, Mater. Chem. Phys. 238, 121877 (2019).

    CAS  Google Scholar 

  21. Y. Li, Y. Zhang, F. Li, J. Feng, M. Li, L. Chen, and Y. Dong, Biosens. Bioelectron. 92, 33 (2017).

    CAS  Google Scholar 

  22. Y. Fang, Q. Hu, X. Yu, and L. Wang, Sens. Actuator B 258, 238 (2018).

    CAS  Google Scholar 

  23. A. Mokhtari, H. Karimi-Maleh, A.A. Ensafi, and H. Beitollahi, Sens. Actuator B 169, 96 (2012).

    CAS  Google Scholar 

  24. J.G. Manjunatha, M. Deraman, N.H. Basri, and I.A. Talib, ARAB J. Chem. 11, 149 (2018).

    CAS  Google Scholar 

  25. C. Raril and J.G. Manjunatha, J. Anal. Sci. Technol. 11, 3 (2020).

    Google Scholar 

  26. B. Ballarin, E. Boanini, L. Montalto, P. Mengucci, D. Nanni, C. Parise, I. Ragazzini, D. Rinaldi, N. Sangiorgi, A. Sanson, and M.C. Cassani, Electrochim. Acta 322, 134707 (2019).

    CAS  Google Scholar 

  27. A. Jędrzak, T. Rębiś, M. Nowicki, K. Synoradzki, R. Mrówczyński, and T. Jesionowski, Appl. Surf. Sci. 455, 455 (2018).

    Google Scholar 

  28. L. Bai, Y. Chen, Y. Bai, Y. Chen, J. Zhou, and A. Huang, Biomaterials 133, 11 (2017).

    CAS  Google Scholar 

  29. G. Zhu, Y. Ge, Y. Dai, X. Shang, J. Yang, and J. Liu, Electrochim. Acta 268, 202 (2018).

    CAS  Google Scholar 

  30. L. Xue, W. Wang, and Y. Guo, Sens. Actuator B 244, 47 (2017).

    CAS  Google Scholar 

  31. A. Roy, A. Ray, P. Sadhukhan, K. Naskar, G. Lal, R. Bhar, C. Sinha, and S. Das, Synthet. Met. 245, 182 (2018).

    CAS  Google Scholar 

  32. G.B. Barra, T.H. Santa Rita, J.D.A. Vasques, C.F. Chianca, L.F.A. Nery, and S.S.S. Costa, Clin. Biochem. 48, 976 (2015).

    CAS  Google Scholar 

  33. Y. Wang, Y. Liu, B. Wu, M. Rui, J. Liu, and G. Lu, Chemosphere 240, 124942 (2020).

    CAS  Google Scholar 

  34. W. Yu, T. Zhang, M. Ma, C. Chen, X. Liang, K. Wen, Z. Wang, and J. Shen, Anal. Chim. Acta 1027, 130 (2018).

    CAS  Google Scholar 

  35. R. Kumar, J. Shin, L. Yin, J. You, Y.S. Meng, and J. Wang, Adv. Energy Mater. 7, 1602096 (2017).

    Google Scholar 

  36. Q. Lu, L. Liu, S. Yang, J. Liu, Q. Tian, W. Yao, Q. Xue, M. Li, and W. Wu, J. Power Sources 361, 31 (2017).

    CAS  Google Scholar 

  37. W. Wu, Nanoscale 9, 7342 (2017).

    CAS  Google Scholar 

  38. C. Casimero, A. McConville, and J. Fearon, Anal. Chim. Acta 1027, 1 (2018).

    CAS  Google Scholar 

  39. A.J. Bandodkar, R. Nuñez Flores, W. Jia, and J. Wang, Adv. Mater. 27, 3060 (2015).

    CAS  Google Scholar 

  40. Z. Duan, Y. Jiang, S. Wang, Z. Yuan, Q. Zhao, G. Xie, X. Du, H. Tai, and A.C.S. Sustain, Chem. Eng. 7, 17474 (2019).

    CAS  Google Scholar 

  41. Q. Bao, Z. Yang, Y. Song, M. Fan, P. Pan, J. Liu, Z. Liao, and J. Wei, J. Mater. Sci. Mater. Electron. 30, 1751 (2019).

    CAS  Google Scholar 

  42. M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, and M.D. Shirsat, Electrochim. Acta 259, 930 (2018).

    CAS  Google Scholar 

  43. F. Lisboa, E. Neiva, M. Bergamini, L. Marcolino Jr, and A. Zarbin, J. Brazil Chem. Soc. 31, 1093 (2020).

    CAS  Google Scholar 

  44. J. Han, N. Zhang, D. Liu, H. Ma, T. Han, and D. Sun, Ionics 26, 1029 (2020).

    CAS  Google Scholar 

  45. T. Lindfors and A. Ivaska, J. Electroanal. Chem. 531, 43 (2002).

    CAS  Google Scholar 

  46. Z. Teng, H. Lv, L. Wang, L. Liu, C. Wang, and G. Wang, Electrochem. Acta 202, 722 (2016).

    Google Scholar 

  47. H. Lv, Z. Teng, C. Wang, and G. Wang, Sens. Actuator B 242, 897 (2017).

    CAS  Google Scholar 

  48. M. Sadhukhan, and S. Barman, J. Mater. Chem. A 1, 2752 (2013).

    CAS  Google Scholar 

  49. Z. Wang, E. Liu, and X. Zhao, Thin Solid Films 519, 5285 (2011).

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Tianjin Development Program for Innovation and Entrepreneurship, Tianjin Natural Science Foundation (Grant Nos. 18JCZDJC99800, 17JCQNJC00900, 18JCQNJC71200), National Natural Science Foundation of China (Grant No. 51502203), Tianjin Young Overseas High-level Talent Plans (Grant No. 01001502), Tianjin Science and Technology Foundation (Grant No. 17ZXZNGX00090), Tianjin Distinguished Professor Foundation of Young Researcher.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Yang, Peng Pan or Jun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yang, X., Pan, P. et al. All-Printed Flexible Electrochemical Sensor Based on Polyaniline Electronic Ink for Copper (II), Lead (II) and Mercury (II) Ion Determination. J. Electron. Mater. 49, 6695–6705 (2020). https://doi.org/10.1007/s11664-020-08418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08418-x

Keywords

Navigation