Skip to main content
Log in

Characterization, Electrical and Electrochemical Study of La0.9Sr1.1Co1−xMoxO4 (x ≤ 0.1) as Cathode for Solid Oxide Fuel Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, Ruddlesden–Popper La0.9Sr1.1Co1−xMoxO4 (x ≤ 0.1) powders were successfully synthesized using a modified sol–gel method. The structural analysis revealed that all samples had a tetragonal phase at room temperature. The electrical conductivity measurements showed that all samples had semiconducting behavior in the range of room temperature to 850°C. Moreover, it was found that the electrical conductivity of the ceramics was enhanced with the increase of Mo doping, at temperatures higher than 300°C up to 850°C. This enhancement of the electrical conductivity can be due to Co3+–O–Mo5+–O–Co2+ double-exchange interaction. The EIS measurements of the symmetrical cells were carried out for x = 0, 0.03 and 0.1 samples at 650°C, 750°C and 850°C. The obtained area specific resistance (ASR) values of La0.9Sr1.1Co1−xMoxO4 on ceria-gadolinium oxide (CGO) electrolyte at 850°C were 0.36 Ω cm2, 0.35 Ω cm2 and 1 Ω cm2 for samples x = 0, 0.03 and 0.1, respectively. These results indicate that the electrical conductivity of pure sample (La0.9Sr1.1CoO4) has been enhanced by Mo substitution in Co ion sites, but limits the oxygen ion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, J. Cheng, Q. Jiang, J. Yang, and J. Gao, J. Power Sour. 196, 3104 (2011).

    Article  CAS  Google Scholar 

  2. D.J. Brett, A. Atkinson, N.P. Brandon, and S.J. Skinner, Chem. Soc. Rev. 37, 1568 (2008).

    Article  CAS  Google Scholar 

  3. A. Gómez-Pérez, M.T. Azcondo, M. Yuste, J.C. Pérez-Flores, N. Bonanos, F. Porcher, A. Muñoz-Noval, M. Hoelzel, F. García-Alvarado, and U. Amador, J. Mater. Chem. A 4, 3386 (2016).

    Article  Google Scholar 

  4. Z. Zhang, Y. Zhu, Y. Zhong, W. Zhou, and Z. Shao, Adv. Energy Mater. 7, 1700242 (2017).

    Article  Google Scholar 

  5. J. Cui, Y. Gong, R. Shao, S. Wang, J. Mao, M. Yang, W. Wang, and Q. Zhou, J. Mater. Sci.: Mater. Electron. 30, 5573 (2019).

    CAS  Google Scholar 

  6. I. Belenkaya, A. Matvienko, and A. Nemudry, J. Mater. Chem. A 3, 23240 (2015).

    Article  CAS  Google Scholar 

  7. I. Belenkaya, A. Matvienko, and A. Nemudry, J. Appl. Crystallogr. 48, 179 (2015).

    Article  CAS  Google Scholar 

  8. M. Popov, I. Starkov, S. Bychkov, and A. Nemudry, J. Membr. Sci 469, 88 (2014).

    Article  CAS  Google Scholar 

  9. O. Savinskaya and A. Nemudry, J. Membr. Sci 459, 45 (2014).

    Article  CAS  Google Scholar 

  10. S. Huang, S. Feng, Q. Lu, Y. Li, H. Wang, and C. Wang, J. Power Sour. 251, 357 (2014).

    Article  CAS  Google Scholar 

  11. A. Aguadero, D. Pérez-Coll, J. Alonso, S. Skinner, and J. Kilner, Chem. Mater. 24, 2655 (2012).

    Article  CAS  Google Scholar 

  12. J. Wang, T. Yang, L. Lei, and K. Huang, J. Mater. Chem. A 5, 8989 (2017).

    Article  CAS  Google Scholar 

  13. V. Cascos and J. Alonso, Materials 9, 579 (2016).

    Article  Google Scholar 

  14. V. Cascos, R. Martínez-Coronado, and J. Alonso, Int. J. Hydrog. Energy 39, 14349 (2014).

    Article  CAS  Google Scholar 

  15. M. Li, M. Zhao, F. Li, W. Zhou, V.K. Peterson, X. Xu, Z. Shao, I. Gentle, and Z. Zhu, Nat. Commun. 8, 13990 (2017).

    Article  CAS  Google Scholar 

  16. A. Demont, R. Sayers, M.A. Tsiamtsouri, S. Romani, P.A. Chater, H. Niu, C. Martí Gastaldo, Z. Xu, Z. Deng, and Y. Bréard, J. Am. Chem. Soc 135, 10114 (2013).

    Article  CAS  Google Scholar 

  17. E. Shubnikova, O. Bragina, and A. Nemudry, J. Ind. Eng. Chem. 59, 242 (2018).

    Article  CAS  Google Scholar 

  18. R. Martínez-Coronado, J. Alonso, and M. Fernández-Díaz, J. Power Sour. 258, 76 (2014).

    Article  Google Scholar 

  19. S. Huang, Q. Lu, S. Feng, G. Li, and C. Wang, Adv. Energy Mater 1, 1094 (2011).

    Article  CAS  Google Scholar 

  20. Y.-F. Sun, Y.-Q. Zhang, B. Hua, Y. Behnamian, J. Li, S.-H. Cui, J.-H. Li, and J.-L. Luo, J. Power Sour. 301, 237 (2016).

    Article  CAS  Google Scholar 

  21. X. Li and Y. Li, J. Mol. Catal. A Chem. 386, 69 (2014).

    Article  CAS  Google Scholar 

  22. T. Wei, Q. Zhang, Y.-H. Huang, and J.B. Goodenough, J. Mater. Chem. 22, 225 (2012).

    Article  CAS  Google Scholar 

  23. T. Ghorbani-Moghadam, A. Kompany, M. Bagheri-Mohagheghi, and M.E. Abrishami, J. Magn. Mag. Mater 465, 768 (2018).

    Article  CAS  Google Scholar 

  24. Z. Talaei, H. Salamati, and A. Pakzad, Int. J. Hydrog. Energy 35, 9401 (2010).

    Article  CAS  Google Scholar 

  25. A. Pakzad, H. Salamati, P. Kameli, and Z. Talaei, Int. J. Hydrog. Energy 35, 9398 (2010).

    Article  CAS  Google Scholar 

  26. S. Gómez, J. Gurauskis, V. Øygarden, D. Hotza, T. Grande, and K. Wiik, Solid State Ion 292, 38 (2016).

    Article  Google Scholar 

  27. W. Lu, Y. Sun, R. Ang, X. Zhu, and W. Song, Phys. Rev. B 75, 014414 (2007).

    Article  Google Scholar 

  28. M.V. Sandoval, C. Pirovano, E. Capoen, R. Jooris, F. Porcher, P. Roussel, and G.H. Gauthier, Int. J. Hydrog. Energy 42, 21930 (2017).

    Article  CAS  Google Scholar 

  29. Y.S. Chung, T. Kim, T.H. Shin, H. Yoon, S. Park, N.M. Sammes, W.B. Kim, and J.S. Chung, J. Mater. Chem. A 5, 6437 (2017).

    Article  CAS  Google Scholar 

  30. Y.-P. Wang, Q. Xu, D.-P. Huang, K. Zhao, M. Chen, and B.-H. Kim, Int. J. Hydrog. Energy 42, 6290 (2017).

    Article  CAS  Google Scholar 

  31. L.V. Makhnach, V.V. Pankov, and P. Strobel, Mater. Chem. Phys. 111, 125 (2008).

    Article  CAS  Google Scholar 

  32. P.I. Cowin, R. Lan, C.T. Petit, and S. Tao, Mater. Chem. Phys. 168, 50 (2015).

    Article  CAS  Google Scholar 

  33. M. Itoh, I. Ohta, and Y. Inaguma, Mater. Sci. Eng. B 41, 55 (1996).

    Article  Google Scholar 

  34. F. Riza and C. Ftikos, J. Eur. Ceram. Soc. 27, 571 (2007).

    Article  CAS  Google Scholar 

  35. M. Stawarz and P.M. Nuckowski, Materials 13, 1745 (2020).

    Article  CAS  Google Scholar 

  36. E.P. Murray and S.A. Barnett, Solid State Ion. 143(3--4), 265 (2001).

  37. Q. Li, H. Zhao, L. Huo, L. Sun, X. Cheng, and J.-C. Grenier, Electrochem. Commun. 9, 1508 (2007).

    Article  CAS  Google Scholar 

  38. S. Liping, H. Lihua, Z. Hui, L. Qiang, and C. Pijolat, J. Power Sour. 179, 96 (2008).

    Article  Google Scholar 

  39. Y. Hu, Y. Bouffanais, L. Almar, A. Morata, A. Tarancon, and G. Dezanneau, Int. J. Hydrog. Energy 38, 3064 (2013).

    Article  CAS  Google Scholar 

  40. M. Rieu, R. Sayers, M. Laguna-Bercero, S. Skinner, P. Lenormand, and F. Ansart, J. Electrochem. Soc. 157, B477 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Vice President for Research and Technology, Ferdowsi University of Mashhad, Iran, under Grant No. 3-40687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kompany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani-Moghadam, T., Kompany, A., Bagheri-Mohagheghi, M.M. et al. Characterization, Electrical and Electrochemical Study of La0.9Sr1.1Co1−xMoxO4 (x ≤ 0.1) as Cathode for Solid Oxide Fuel Cells. J. Electron. Mater. 49, 6448–6454 (2020). https://doi.org/10.1007/s11664-020-08404-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08404-3

Keywords

Navigation