Skip to main content
Log in

Surface Modification of NiO Nanoparticles for Highly Stable Perovskite Solar Cells Based on All-Inorganic Charge Transfer Layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the conventional n-i-p structure of perovskite solar cell (PSC), spiro-OMeTAD is used as the hole transport layer. However, some additives in spiro-OMeTAD, such as LiTFSI and TBP, can bring risks for perovskite degradation. Nickel oxide (NiO), a wide-band gap (3.6–4.0 eV) p-type semiconductor material with excellent electrical and optical properties, is widely applied in the PSCs and other fields. Given the suitable valence and conduction bands, NiO can effectively block electrons and transport holes, which are generated in the perovskite film after illumination. However, depositing a compact and thin NiO layer on the perovskite film is difficult because of the heat and solvent sensitivity of organic–inorganic hybrid perovskite. Here, we propose a facile method to prepare well-dissolved NiO nanoparticles in chlorobenzene, and the NiO film on perovskite is further modified by oxygen plasma or hexanethiol treatment to enhance the hole conductivity. Finally, we obtain a n-i-p structured PSC on the basis of all-inorganic charge transport layer with an efficiency of 4.21% using the prepared NiO film, and the value is further improved to 6.10% after oxygen plasma post-treatment. Moreover, the working stability is enhanced remarkably as the spiro-OMeTAD is replaced by NiO film, which is important for the application of PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chen and G. Shi, Adv. Mater. 29, 1605448 (2017).

    Google Scholar 

  2. J.L. Yan, W.M. Qiu, G. Wu, P. Heremans, and H.Z. Chen, J. Mater. Chem. A 6, 11063 (2018).

    CAS  Google Scholar 

  3. G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, and T.C. Sum, Science 342, 344 (2013).

    CAS  Google Scholar 

  4. Q.Q. Lin, A. Armin, P.L. Burn, and P. Meredith, Nat. Photon. 9, 687 (2015).

    Google Scholar 

  5. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. Krol, T. Moehl, M. Gratzel, and J.E. Moser, Nat. Photon. 8, 250 (2014).

    CAS  Google Scholar 

  6. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko, Nano Lett. 15, 3692 (2015).

    CAS  Google Scholar 

  7. G.R. Li and X.P. Gao, Adv. Mater. 32, 1806478 (2020).

    CAS  Google Scholar 

  8. NREL, Best research cell efficiencies, https://www.nrel.gov/pv/cell-efficiency.html, Accessed January 2020.

  9. S.W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L.E. Mundt, S. Lee, S. Park, H. Park, M.C. Schubert, S.W. Glunz, Y. Ko, Y. Jun, Y. Kang, H.S. Lee, and D. Kim, Sci. Rep. 6, 38150 (2016).

    CAS  Google Scholar 

  10. Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle, U. Bach, L. Spiccia, and Y.B. Cheng, J. Mater. Chem. A 3, 8139 (2015).

    CAS  Google Scholar 

  11. A.M. Soufiani, Z. Hameiri, S. Meyer, S. Lim, M. Tayebjee, J.S. Yun, A. Ho-Baillie, G.J. Conibeer, L. Spiccia, and M.A. Green, Adv. Energy Mater. 7, 1602111 (2017).

    Google Scholar 

  12. J. Xue, Y. Gu, and Q.S. Shan, Angew. Chem. Int. Edit. 56, 5232 (2017).

    CAS  Google Scholar 

  13. Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle, U. Bach, L. Spicci, and Y.B. Cheng, J. Mater. Chem. A 15, 8139 (2015).

    Google Scholar 

  14. G. Niu, X. Guo, and L. Wang, J. Mater. Chem. A 17, 8970 (2015).

    Google Scholar 

  15. J. Yang, B.D. Siempelkamp, D. Liu, and L.K. Timothy, ACS Nano 9, 1955 (2015).

    CAS  Google Scholar 

  16. J. Song, E. Zheng, J. Bian, X.F. Wang, W. Tian, Y. Sanehira, and T. Miyasaka, J. Mater. Chem. A 20, 10837 (2015).

    Google Scholar 

  17. J.K. Nam, S.U. Chai, W. Cha, Y.J. Choi, W. Kim, M.S. Jung, J. Kwon, D. Kim, and H. Park, Nano Lett. 17, 2028 (2017).

    CAS  Google Scholar 

  18. M.H. Du, J. Mater. Chem. A 2, 9091 (2014).

    CAS  Google Scholar 

  19. N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, and M. Gratzel, Science 358, 768 (2017).

    CAS  Google Scholar 

  20. J. Xi, K. Xi, A. Sadhanala, K.H.L. Zhang, G. Li, H. Dong, T. Lei, F. Yuan, C. Ran, B. Jiao, P.R. Coxon, C.J. Harris, X. Hou, R.V. Kumar, and Z. Wu, Nano Energy 56, 741 (2019).

    CAS  Google Scholar 

  21. J. Chen, D. Lee, and N.G. Park, ACS Appl. Mater. Interfaces 9, 36338 (2017).

    CAS  Google Scholar 

  22. F. Hou, Z. Su, F. Jin, X. Yan, L. Wang, H. Zhao, J. Zhu, B. Chu, and W. Li, Nanoscale 7, 9427 (2015).

    CAS  Google Scholar 

  23. I.R. Gyon, K. Byol, G.K. Song, H.R. Jin, S.S. Kyong, and H.K. Song, J. Electron. Mater. 48, 5858 (2019).

    Google Scholar 

  24. J.X. Wang, J. Li, X. Xu, G. Xu, and H. Shen, J. Electron. Mater. 45, 5128 (2016).

    Google Scholar 

  25. Y. Du, C. Xin, W. Huang, B. Shi, Y. Ding, C. Wei, Y. Zhao, Y. Li, and X. Zhang ACS Sustain. Chem. Eng. 6, 12 (2018).

    Google Scholar 

  26. Y.W. Li, Y. Zhao, Q. Chen, Y. Yang, Y.S. Liu, Z.R. Hong, Z.H. Liu, Y.T. Hsieh, L. Meng, and Y.F. Li, J. Am. Chem. Soc. 137, 15540 (2015).

    CAS  Google Scholar 

  27. M. Zhang, J. Wu, J. Zou, Q. Zhu, P. Yuan, X. Wang, S. Wang, W. Sun, and L. Zhang, J. Alloy. Compd. 825, 154035 (2020).

    CAS  Google Scholar 

  28. H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie, T. Zhou, X. Wan, X. Zhang, Y. Liu, and Y. Chen, J. Am. Chem. Soc. 140, 11639 (2018).

    CAS  Google Scholar 

  29. F. Hou, B. Shi, T. Li, C. Xin, Y. Ding, C. Wei, G. Wang, Y. Li, Y. Zhao, and X. Zhang, ACS Appl. Mater. Interfaces 11, 25218 (2019).

    CAS  Google Scholar 

  30. Q. Zhou, L.S. Liang, J.J. Hu, B.B. Cao, L.K. Yang, T.J. Wu, X. Li, B. Zhang, and P. Gao, Adv. Energy Mater. 9, 1802595 (2019).

    Google Scholar 

  31. P.P. Rajbhandari and T.P. Dhakal, J. Vac. Sci. Technol. A38, 3 (2020).

    Google Scholar 

  32. S. Guarnera, A. Abate, and W. Zhang, J. Phys. Chem. Lett. 6, 432 (2015).

    CAS  Google Scholar 

  33. W. Zhang, J. Tang, J. Wu, and L. Zhang, Funct. Mater. Lett. 12, 1850088 (2019).

    CAS  Google Scholar 

  34. M. Wang, T. Zhang, H. Li, S. Liu, X. Wang, X. Gong, Q. Sun, and Y. Shen, J. Phys. Chem. Lett. 10, 200 (2019).

    Google Scholar 

  35. R. Li, P. Wang, B. Chen, X. Cui, Y. Ding, Y. Li, D. Zhang, Y. Zhao, and X. Zhang, ACS Energy Lett 5, 79 (2020).

    CAS  Google Scholar 

  36. W. Zhang, X. Zhang, T. Wu, W. Sun, J. Wu, and L. Zhang, Electrochim. Acta 293, 211 (2019).

    CAS  Google Scholar 

  37. X.B. Xu, Z.H. Liu, Z.X. Zuo, M. Zhang, Z.X. Zhao, Y. Shen, H.P. Zhou, Q. Chen, Y. Yang, and M.K. Wang, Nano Lett. 15, 2402 (2015).

    CAS  Google Scholar 

  38. J. You, L. Meng, T.B. Song, T.F. Guo, Y. Yang, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, and N.D. Marco, Nat. Nanotechnol. 11, 75 (2016).

    Google Scholar 

  39. H. Wang, Y.C. Cao, J. Li, J.G. Yu, H.Y. Gao, Y.N. Zhao, Y.U. Kwon, and G.D. Li, Ionics 24, 2745 (2018).

    CAS  Google Scholar 

  40. S.D. Sung, M.S. Kang, I.T. Choi, H.M. Kim, H. Kim, M. Hong, H.K. Kim, and W.I. Lee, Chem. Commun. 50, 14161 (2014).

    CAS  Google Scholar 

  41. Y. Qin, J. Song, Q. Qiu, Y. Liu, Y. Zhao, L. Zhu, and Y. Qing, J. Alloy. Compd. 810, 151970 (2019).

    CAS  Google Scholar 

  42. Y. Liu, J. Song, Y.S. Qin, Q. Qiu, Y. Zhao, L. Zhu, and Y. Qiang, J. Mater. Sci.-Mater. EL. 30, 15627 (2019).

    CAS  Google Scholar 

  43. H. Liu, J. Song, Y. Qin, J. Mou, Q. Qiu, Y. Zhao, L. Zhu, and Y. Qiang, Vacuum 172, 109077 (2020).

    CAS  Google Scholar 

  44. J. Song, S.P. Li, Y.L. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X.Q. Gu, and Y.H. Qiang, J. Alloy. Compd. 694, 1232 (2017).

    CAS  Google Scholar 

  45. Q. Qiu, H. Liu, Y. Qin, C. Ren, and J. Song, J. Mater. Sci. 55, 13881 (2020).

    CAS  Google Scholar 

  46. X. Liang, Q. Yi, S. Bai, X. Dai, X. Wang, Z. Ye, F. Gao, F. Zhang, B. Sun II, and Y. Jin, Nano Lett. 14, 3117 (2014).

    CAS  Google Scholar 

  47. E. Chow, T.R. Gengenbach, L. Wieczorek, and B. Raguse, Sens. Actuators B 143, 704 (2010).

    CAS  Google Scholar 

  48. D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.C. Baena, J. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, Sci. Adv. 2, e1501170 (2016).

    Google Scholar 

  49. A.A. Mamuna, T.T. Ava, T.M. Abdel-Fattah, H.J. Jeong, M.S. Jeong, S. Han, H. Yoon, and G. Namkoong, Sol. Energy 188, 609 (2019).

    Google Scholar 

  50. Y. Liu, Y.C. Hu, X.Y. Zhang, P. Zeng, F.M. Li, B. Wang, Q. Yang, and M.Z. Liu, Nano Energy 70, 104483 (2020).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of China University of Mining and Technology (DYGX-2020-010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Song or Yinghuai Qiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Q., Mou, J., Song, J. et al. Surface Modification of NiO Nanoparticles for Highly Stable Perovskite Solar Cells Based on All-Inorganic Charge Transfer Layers. J. Electron. Mater. 49, 6300–6307 (2020). https://doi.org/10.1007/s11664-020-08403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08403-4

Keywords

Navigation