Skip to main content

Commercial GaN-Based Power Electronic Systems: A Review

Abstract

Wide bandgap semiconductor technology is gaining widespread acceptance in the area of high-power and high-temperature power electronics. Gallium nitride (GaN) not only has a wide bandgap of 3.4 eV and all the associated superior electronic properties but also enables the development of high-mobility power devices which is critical in increasing the power density of a power electronics system. Since a commercial GaN power transistor has a lateral structure as opposed to the traditional vertical device structure, commercially available devices are rated below 1000 V breakdown voltage with a maximum value of 900 V and typical value around 650 V. The primary focus of this review will be to introduce readers to the commercially available power electronic systems developed by various manufacturers which employ GaN-based power devices and highlight their remarkable performance which surpasses existing technology. This review also includes a brief introduction on GaN technology followed by current market study showing the roadmap of integration of GaN-based power electronics in the power industry.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    F. Iacopi, M. Van Hove, M. Charles, and K. Endo, MRS Bull. 40, 390 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    A. Bindra and T. Keim, IEEE Power Electron. Mag. 6, 48 (2019).

    Google Scholar 

  3. 3.

    T. McNutt, B. Passmore, J. Fraley, B. McPherson, R. Shaw, K. Olejniczak, and A. Lostetter, J. Electron. Mater. 43, 4552 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    J.L. Hudgins, J. Electron. Mater. 32, 471 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    J. Hornberger, A.B. Lostetter, K.J. Olejniczak, T. McNutt, S.M. Lal, A. Mantooth, in IEEE Aerosp. Conf. Proc., (2004), pp. 2538–2555.

  6. 6.

    L. Spaziani, L. Lu, in Proc. Int. Symp. Power Semicond. Devices ICs, Institute of Electrical and Electronics Engineers Inc., (2018), pp. 8–11.

  7. 7.

    J.W. Milligan, S. Sheppard, W. Pribble, Y.F. Wu, S.G. Müller, J.W. Palmour, in IEEE Natl. Radar Conf.-Proc., (2007), pp. 960–964.

  8. 8.

    S.B. Bayne and B.N. Pushpakaran, J. Electr. Eng. Electron. Technol. 1, 1 (2012). https://doi.org/10.4172/2325-9833.1000101.

  9. 9.

    L. Cheng, A.K. Agarwal, C. Capell, M. O’loughlin, K. Lam, J. Richmond, E. Van Brunt, A. Burk, J.W. Palmour, H. O’brien, A. Ogunniyi, C. Scozzie, in Dig. Tech. Pap. Int. Pulsed Power Conf., (2013).

  10. 10.

    T.J. Flack, B.N. Pushpakaran, and S.B. Bayne, J. Electron. Mater. 45, 2673 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    M. Shur, B. Gelmont, and M. Asif Khan, J. Electron. Mater. 25, 777 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    B.N. Pushpakaran, A.S. Subburaj, S.B. Bayne, and J. Mookken, Renew. Sustain. Energy Rev. 55, 971 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    S. Dimitrijev, in 2017 IEEE 30th Int. Conf. Microelectron., (2017), pp. 29–34.

  14. 14.

    K. V. Vasilevskiy, S.K. Roy, N. Wood, A.B. Horsfall, N.G. Wright, in Mater. Sci. Forum, Trans Tech Publications Ltd, (2017), pp. 254–257

  15. 15.

    F. Moscatelli, A. Poggi, S. Solmi, and R. Nipoti, IEEE Trans. Electron Devices 55, 961 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    L.J. Brillson, G.M. Foster, J. Cox, W.T. Ruane, A.B. Jarjour, H. Gao, H. von Wenckstern, M. Grundmann, B. Wang, D.C. Look, A. Hyland, and M.W. Allen, J. Electron. Mater. 47, 4980 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013).

    Article  Google Scholar 

  18. 18.

    H. Zhou, W. Liu, E. Persson, in Proc. PCIM Eur. 2015; Int. Exhib. Conf. Power Electron. Intell. Motion, Renew. Energy Energy Manag., (2015), pp. 1–6.

  19. 19.

    A.H. Wienhausen, D. Kranzer, in Mater. Sci. Forum, (2013), pp. 1123–1127.

  20. 20.

    K. Kruse, M. Elbo, Z. Zhang, in Conf. Proc.-IEEE Appl. Power Electron. Conf. Expo.-APEC, Institute of Electrical and Electronics Engineers Inc., (2017), pp. 273–278.

  21. 21.

    Q. Huang and A.Q. Huang, CPSS Trans. Power Electr. Appl. 2, 118 (2017).

    Article  Google Scholar 

  22. 22.

    Yole Développement, in Compound Semiconductor Quarterly Market Monitor (Lyon, France, 2020)

  23. 23.

    Yole Développement, in RF GaN Market: Applications, Players, Technology and Substrates 2019 report (Lyon, France, 2019)

  24. 24.

    T. Boles, in 2017 12th Eur. Microw. Integr. Circuits Conf., (2017), pp. 21–24

  25. 25.

    W.A. Melton and J.I. Pankove, J. Cryst. Growth 178, 168 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, and W.L. Pribble, IEEE Trans. Microw. Theory Tech. 60, 1764 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    D. Francis, F. Faili, D. Babić, F. Ejeckam, A. Nurmikko, and H. Maris, Diam. Relat. Mater. 19, 229 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    F. Ejeckam, D. Francis, F. Faili, F. Lowe, D. Twitchen, B. Bolliger, in 2015 China Semicond. Technol. Int. Conf., (2015), pp. 1–3

  29. 29.

    H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, C. De Santi, M.M. De Souza, S. Decoutere, L. Di Cioccio, B. Eckardt, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M.J. Uren, M. Van Hove, D.J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, and Y. Zhang, J. Phys. D. Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aaaf9d.

    Article  Google Scholar 

  30. 30.

    F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, Materials 12, 1599 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    E.A. Jones, F.F. Wang, and D. Costinett, IEEE J. Emerg. Sel. Top. Power Electron. 4, 707 (2016).

    Article  Google Scholar 

  32. 32.

    Transphorm Inc., 600 V Cascode GaN FET in PQFN88 (drain tab), TPH3206LDG datasheet (2017)

  33. 33.

    GaN Enables 504 W Power supply module to be 28 percent smaller. https://powerpulse.net/504w-gan-based-power-supply-module-28-percent-smaller/. Accessed 01 Jul. 2019.

  34. 34.

    TDK-Lambda Inc., 500 Watt AC-DC power module, PHF500F Series datasheet (2019)

  35. 35.

    Aveox to launch ultra-high efficiency AC power conversion modules with APFC powered by GaN systems. https://www.globenewswire.com/news-release/2019/03/18/1756427/0/en/Aveox-to-Launch-Ultra-High-Efficiency-AC-Power-Conversion-Modules-with-APFC-Powered-by-GaN-Systems.html. Accessed 01 Jul. 2019.

  36. 36.

    Aveox and gan systems partner on 3-phase active power factor correction. https://powerpulse.net/gan-systems-partners-with-aveox-to-make-5-x-smaller-3-phase-converters-with-apfc/. Accessed 01 Jul. 2019.

  37. 37.

    T. MacElwee, L. Yushyna, P. Stoimenov, A. Mizan, J. Roberts, High performance GaN E-HEMT power device in an embedded package, GaN Systems Inc.

  38. 38.

    GaN Systems Inc., Thermal design for GaN systems’ Top-side cooled GaNpx®-T packaged devices. Application Note GN002 (2018)

  39. 39.

    GaN Systems Inc., PCB thermal design guide for GaN enhancement mode power transistors. Application Note GN005 (2016)

  40. 40.

    PFC totem pole architecture and GaN combine for high power and efficiency. https://www.edn.com/design/power-management/4458513/PFC-totem-pole-architecture-and-GaN-combine-for-high-power-and-efficiency. Accessed 01 Jul. 2019.

  41. 41.

    Bel Power Solutions and Protection., AC-DC Front-End Power Supply, TET3000-12-069RA datasheet (2018)

  42. 42.

    Transphorm Inc., 650 V Cascode GaN FET inTO-247 (source tab), TPH3205WSB datasheet (2018)

  43. 43.

    The New Flatpack2 SHE Rectifier. https://www.eltek.com/us/insights/she-is-so-cool/. Accessed 01 Jul. 2019.

  44. 44.

    Infineon Technologies AG. Eltek Launches The Flatpack2 SHE, A super high efficient power conversion module with the new game changing coolgan™ technology from infineon at its core. 2019, https://www.infineon.com/cms/en/about-infineon/press/market-news/2017/INFPMM201710-004.html. Accessed 01 July 2019.

  45. 45.

    Eltek, A delta group company, super high efficiency (SHE) rectifier for telecom applications, Flatpack2 48 V/3000 SHE Rectifier datasheet (2017)

  46. 46.

    PFC Transphorm’s high-voltage gan helps inergy disrupt the solar power generator market…again. https://www.businesswire.com/news/home/20181204005378/en/Transphorm%E2%80%99s-High-Voltage-GaN-Helps-Inergy-Disrupt-Solar. Accessed 01 Jul. 2019.

  47. 47.

    POWER-GEN Show. https://inergytek.com/pages/kodiakextreme. Accessed 01 Jul. 2019.

  48. 48.

    Transphorm Inc., 650 V GaN FET PQFN Series, TPH3206LDGB datasheet (2019)

  49. 49.

    Transphorm Inc., 650 V GaN FET inTO-247 (source tab), TP65H050WS datasheet (2018)

  50. 50.

    Transphorm Inc., 650 V GaN FET PQFN Series, TP65H150LSG preliminary datasheet (2019)

  51. 51.

    Transphorm Inc., 600 V Cascode GaN FET inTO-247 (source tab), TPH3205WS datasheet (2018)

  52. 52.

    The emperor of efficiency: corsair’s Ax1600i PSU rules alone (Review). https://www.anandtech.com/show/12645/the-corsair-ax1600i-psu-review-unparalleled-performance. Accessed 01 Jul. 2019.

  53. 53.

    Corsair, Digital ATX Power Supply, AX1600i product manual (2017)

  54. 54.

    STMicroelectronics, Overview of USB Type-C and Power Delivery technologies, TA0357 technical article (2018)

  55. 55.

    Navitas found inside the RAVPower RP-PC104-W gallium nitride 45 W USB C power delivery charger. https://www.techinsights.com/blog/navitas-found-inside-ravpower-rp-pc104-w-gallium-nitride-45-w-usb-c-power-delivery-charger. Accessed 01 Jul. 2019.

  56. 56.

    Navitas Semiconductor, 650 V GaNFast™ Power IC, NV6115 datasheet (2018)

  57. 57.

    RAVPower RP-PC104 45 W ultrathin PD wall charger, User Manual.

  58. 58.

    Power Integrations Scores OEM design win with their PowiGaN technology. https://www.techinsights.com/blog/power-integrations-scores-oem-design-win-their-powigan-technology. Accessed 29 March 2020

  59. 59.

    Software-defined inverter features 3-phase gan power stage. https://powerpulse.net/software-defined-inverter-features-3-phase-gan-power-stage/. Accessed 01 Jul. 2019.

  60. 60.

    Texas Instruments, Piccolo™ 32-bit MCU with 90 MHz, FPU, VCU, 256 KB Flash, CLA, InstaSPIN-MOTION, TMS320F28069MPZT datasheet (2018)

  61. 61.

    Efficient Power Conversion Corporation (EPC), Enhancement mode power transistor in passivated die form with solder bumps, EPC2021 datasheet (2019)

  62. 62.

    SDI TAPAS Community Inverter, Quick-start guide 2.0

  63. 63.

    M. Su, C. Chen, L. Chen, M. Esposto, S. Rajan, in 2012 Int. Conf. Compd. Semicond. Manuf. Technol. CS MANTECH 2012, (2012).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bejoy N. Pushpakaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pushpakaran, B.N., Subburaj, A.S. & Bayne, S.B. Commercial GaN-Based Power Electronic Systems: A Review. Journal of Elec Materi 49, 6247–6262 (2020). https://doi.org/10.1007/s11664-020-08397-z

Download citation

Keywords

  • Gallium nitride (GaN)
  • commercial GaN-based systems
  • power electronics
  • power semiconductors
  • wide bandgap