Skip to main content
Log in

Development of an Impedance-Based Electrical Humidity Sensor Using Sb-Doped Ge-Se-Te Chalcogenide Glasses

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present paper demonstrates the effect of humidity on the (Ge11.5Te12.5Se67.5)80Sb20 and (Ge11.5 Te12.5Se67.5)70Sb30 thin film deposited on a glass substrate. The films prepared using a thermal evaporation technique reveal an amorphous nature as observed from the x-ray diffraction (XRD) graph. The light absorption taking place in the UV-visible region was confirmed using a UV–Vis spectrophotometer, and optical bandgap values of 1.46 eV and 1.42 eV were found for (Ge11.5Te12.5Se67.5)80Sb20 and (Ge11.5 Te12.5Se67.5)70Sb30 alloys using Tauc’s plot. The films were investigated for an impedance-based electrical humidity sensor. The maximum sensitivity of the chalcogenide sensing element was 13.86 MΩ/%RH and 15.31 MΩ/%RH for (Ge11.5Te12.5Se67.5)80Sb20 and (Ge11.5 Te12.5Se67.5)70Sb30, respectively, in the range 10–25%RH at room temperature, and the average sensitivity for the entire range of %RH was 7.33 MΩ/%RH and 9.42 MΩ/%RH, respectively, for the two glasses. The aging effect for samples was found to be negligible; hence they are stable against time, which makes them suitable for use as humidity sensors. The repeatability of the sensors was 89% and 94.45%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mishra, P. Jaiswal, P. Lohia, D.K. Dwivedi, Chalcogenide glasses for sensor application: a review, IEEE Xplore, vol. 1 (2018).

  2. A. Zakery and S.R. Elliott, J. Non-Cryst. Solids 330, 1 (2003).

    Article  CAS  Google Scholar 

  3. J.A. Savage, J. Non-Cryst. Solids 47, 101 (1982).

    Article  CAS  Google Scholar 

  4. S. Mishra, P. Lohia, and D.K. Dwivedi, Infrared Phys. Technol. 100, 109 (2019).

    Article  CAS  Google Scholar 

  5. H.P. Pathak, N. Shukla, V. Kumar, and D.K. Dwivedi, Opt Mater. 52, 69 (2016).

    Article  CAS  Google Scholar 

  6. P.K. Singh and D.K. Dwivedi, Adv. Sci. Eng. Med. 10, 670 (2018).

    Article  CAS  Google Scholar 

  7. V.S. Shiryaeva, V. Karaksina, M.F. Churbanov, T.V. Kotereva, B.S. Stepanov, L.A. Ketkova, I.I. Evdokimov, V.V. Koltashev, V.G. Plotnichenko, A.I. Filatov, and I.N. Antonov, Mater. Res. Bull. 107, 430 (2018).

    Article  Google Scholar 

  8. A. Yang, J. Qiu, J. Ren, R. Wang, H. Ren, J. Jhang, and Z. Yang, J. Non-Cryst. Solids 508, 21 (2019).

    Article  CAS  Google Scholar 

  9. S. Mishra, P. Lohia, and D.K. Dwivedi, Phys. B 572, 81 (2019).

    Article  CAS  Google Scholar 

  10. P.K. Singh and D.K. Dwivedi, Ferroelectrics 531, 72 (2018).

    Article  CAS  Google Scholar 

  11. A. Cheruvalath, V.P.N. Nampoori, and S. Thomas, Sens. Actuat. B Chem. 287, 225 (2019).

    Article  CAS  Google Scholar 

  12. B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A.V. Anupama, and B. Sahoo, Mater. Chem. Phys. 221, 419 (2019).

    Article  CAS  Google Scholar 

  13. T. Das, B.K. Das, K. Parashar, and S.K.S. Parashar, Adv. Sci. Lett. 24, 5703 (2018).

    Article  Google Scholar 

  14. A.K. Sharma, J. Gupta, and R. Basu, Opt. Laser Technol. 98, 291 (2018).

    Article  Google Scholar 

  15. C.X. Yu, A. Ganjoo, H. Jain, C.G. Pantano, and J. Irudayaraj, Anal. Chem. 78, 2500 (2006).

    Article  CAS  Google Scholar 

  16. M.S. Ailavajhala, Y. Gonzalez-Velo, C.D. Poweleit, H.J. Barnaby, M.N. Kozicki, D.P. Butt, and M. Mitkova, J. Hazard. Mater. 269, 68 (2014).

    Article  CAS  Google Scholar 

  17. D. Yang, P. Zhang, J. Zeng, X. Wang, B. Song, and S. Dai, J. Lightwave Technol. 35, 3974 (2017).

    Article  CAS  Google Scholar 

  18. L. Wang, W. Ma, P. Zhang, L. Zhu, D. Yang, X. Wang, and S. Dai, J. Lightwave Technol. 37, 5193 (2019).

    Article  CAS  Google Scholar 

  19. B.C. Yadav, R. Srivastava, C.D. Dwivedi, and P. Pramanik, Sens Actuat A Phys 153, 137 (2009).

    Article  CAS  Google Scholar 

  20. S. Yadav, P. Chaudhary, K.N. Uttam, A. Varma, M. Vashistha, and B.C. Yadav, Nanotechnology 30, 295501 (2019).

    Article  CAS  Google Scholar 

  21. Y. Yu, Y. Zhang, L. Jin, Z. Chen, Y. Li, Q. Li, M. Cao, Y. Che, J. Yang, and J. Yao, Sensors 18, 1 (2018).

    Article  CAS  Google Scholar 

  22. B.C. Yadav, R.C. Yadav, S. Singh, P.K. Dwivedi, H. Ryu, and S. Kang, Opt. Laser Technol. 49, 268 (2013).

    Article  Google Scholar 

  23. G. Uddin, M. Sajid, J. Ali, S. Wan, Y. Hoi, and K. Hyun, Sens. Actuat. B Chem. 266, 354 (2018).

    Article  Google Scholar 

  24. K. Tiwari and N.K. Pandey, SPIE Dig. Libr. 8549, 8549161 (2015).

    Google Scholar 

  25. M. Yang, Y. Li, X. Zhan, and M. Ling, J. Appl. Poly. Sci. 74, 2010 (2015).

    Google Scholar 

  26. R. Nohria, R.K. Khillan, Y. Su, R. Dikshit, Y. Lvov, and K. Varahramyan, Sens. Actuat. B Chem. 114, 218 (2006).

    Article  CAS  Google Scholar 

  27. P. Chaudhary, D.K. Maurya, S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, and R. Prakash, Eur. Polym. J. 112, 161 (2019).

    Article  CAS  Google Scholar 

  28. V. Kumar, V. Chauhan, J. Ram, R. Gupta, S. Kumar, P. Chaudhary, B.C. Yadav, S. Ojha, I. Sulania, and R. Kumar, Surf. Coat. Technol. 392, 125768 (2020).

    Article  CAS  Google Scholar 

  29. P. Chaudhary, S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, N.D. Golubeva, and I.E. Uflyand, Actuat. A Phys. 263, 415 (2017).

    Article  CAS  Google Scholar 

  30. V.A. Ryzhov and B.T. Melekh, Semiconductors 52, 209 (2018).

    Article  Google Scholar 

  31. E. Romanova, Y. Kuzyutkina, V. Shiryaev, N. Abdel-Moneim, D. Furniss, T. Benson, A. Seddon, and S. Guizard, Jr. of Non-Cryst. Sol. 480, 13 (2018).

    Article  CAS  Google Scholar 

  32. D. Zhang, Y. Sun, P. Li, and Y. Zhang, ACS Appl. Mater. Int. 8, 14142 (2016).

    Article  CAS  Google Scholar 

  33. N.D. Md Sin, M. Fuad Kamel, R.I. Alip, Z. Mohamad, and M. Rusop, Adv. Mater. Sci. Eng. 2011, 1 (2011).

    Article  Google Scholar 

  34. S. Aziz, D.E. Chang, and Y.H. Doh, J. Electron. Mater. 44, 3992 (2015).

    Article  CAS  Google Scholar 

  35. S. Pi-Guey and L.-N. Huang, Sens. Actuat. B 123, 501 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Lohia, P., Chaudhary, P. et al. Development of an Impedance-Based Electrical Humidity Sensor Using Sb-Doped Ge-Se-Te Chalcogenide Glasses. J. Electron. Mater. 49, 6492–6500 (2020). https://doi.org/10.1007/s11664-020-08362-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08362-w

Keywords

Navigation