Skip to main content

Advertisement

Log in

Geometrical Structure Optimization Design of High-Performance Bi2Te3-Based Artificially Tilted Multilayer Thermoelectric Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Artificially tilted multilayer thermoelectric devices (ATMTDs) are a kind of thermoelectric device that can directly convert heat into electricity based on transverse thermoelectric effect. Although the devices have a simplified multilayer structure, their geometrical optimization is a complicated task. In this work, n-type Bi2Te2.7Se0.3 and p-type Bi0.1Sb1.9Te3 materials, which have the most important commercial applications in conventional thermoelectric devices, were selected as the component materials to assemble a promising high-performance Bi2Te3-based ATMTD. A numerical analysis method was employed to optimize the device length, device width, and thickness of the component materials. The results revealed that a large device width/length ratio, a small device aspect ratio, and a small thickness of component materials are favorable for achieving a high conversion efficiency. The temperature and charge distributions inside the ATMTD are studied based on finite element simulation. The nonuniform distribution of temperature field inside the device strongly depends on the thermal conductivity of component materials. The accumulation of a transverse electric field, accompanied with the cancellation of longitudinal electric field, is a consequence of different electric field distributions in the two component materials. This work provides a better understanding on the anisotropic electrical and thermal transport behaviors in transverse thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. He and T.M. Tritt, Science 357, eaak9997 (2017).

    Article  Google Scholar 

  2. W.Y. Zhao, Z.Y. Liu, Z.G. Sun, Q.J. Zhang, P. Wei, X. Mu, H.Y. Zhou, C.C. Li, S.F. Ma, D.Q. He, P.X. Ji, W.T. Zhu, X.L. Nie, X.L. Su, X.F. Tang, B.G. Shen, X.L. Dong, J.H. Yang, Y. Liu, and J. Shi, Nature 549, 247 (2017).

    Article  CAS  Google Scholar 

  3. C. Chang, M.H. Wu, D.S. He, Y.L. Pei, C.F. Wu, X.F. Wu, H.L. Yu, F.Y. Zhu, K.D. Wang, Y. Chen, L. Huang, J.F. Li, J.Q. He, and L.D. Zhao, Science 360, 778 (2018).

    Article  CAS  Google Scholar 

  4. A. Rodríguez, J.G. Vián, D. Astrain, and A. Martínez, Energ. Convers. Manage. 50, 1236 (2009).

    Google Scholar 

  5. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  CAS  Google Scholar 

  6. T.H. Kil, S. Kim, D.H. Jeong, D.M. Geum, S. Lee, S.J. Jung, S. Kim, C. Park, J.S. Kim, J.M. Baik, K.S. Lee, C.Z. Kim, W.J. Choi, and S.H. Baek, Nano Energy 37, 242 (2017).

    Article  CAS  Google Scholar 

  7. A. Majumdar, Nat. Nanotech. 4, 214 (2009).

    Article  CAS  Google Scholar 

  8. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. Engl. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  9. G.J. Tan, L.D. Zhao, and M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016).

    Article  CAS  Google Scholar 

  10. T.J. Zhu, Y.T. Liu, C.G. Fu, J.P. Heremans, J.G. Snyder, and X.B. Zhao, Adv. Mater. 29, 1605884 (2017).

    Article  Google Scholar 

  11. Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, and L.D. Chen, Adv. Eng. Mater. 18, 194 (2016).

    Article  CAS  Google Scholar 

  12. T. Zahner, C. Stoiber, E. Zepezauer, and H. Lengfellner, Int. J. Infrared. Milli. 20, 1103 (1999).

    Article  CAS  Google Scholar 

  13. A. Kyarad and H. Lengfellner, Appl. Phys. Lett. 89, 192103 (2006).

    Article  Google Scholar 

  14. C. Reitmajer, F. Walther, and H. Lengfellner, Appl. Phys. A 105, 347 (2011).

    Article  Google Scholar 

  15. S.A. Ali and S. Mazumder, Int. J. Heat Mass Transf. 62, 373 (2013).

    Article  CAS  Google Scholar 

  16. T. Kanno, K. Takahashi, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, J. Electron. Mater. 43, 2072 (2014).

    Article  CAS  Google Scholar 

  17. T. Kanno, S. Yotsuhashi, A. Sakai, K. Takahashi, and H. Adachi, Appl. Phys. Lett. 96, 061917 (2009).

    Article  Google Scholar 

  18. A. Kyarad and H. Lengfeller, Appl. Phys. Lett. 87, 182113 (2005).

    Article  Google Scholar 

  19. H.J. Goldsmid, Materials 2, 903 (2009).

    Article  CAS  Google Scholar 

  20. B.S. Qian and F. Ren, Energies 10, 1006 (2017).

    Article  Google Scholar 

  21. L.P. Hu, T.J. Zhu, X.H. Liu, and X.B. Zhao, Adv. Funct. Mater. 24, 5211 (2014).

    Article  CAS  Google Scholar 

  22. H.J. Goldsmid, Introduction to Thermoelectricity (Berlin: Springer, 2016), pp. 1–7.

    Book  Google Scholar 

  23. X. Mu, W.T. Zhu, W.Y. Zhao, H.Y. Zhou, Z.G. Sun, C.C. Li, S.F. Ma, P. Wei, X.L. Nie, J.H. Yang, and Q.J. Zhang, Nano Energy 66, 104145 (2019).

    Article  CAS  Google Scholar 

  24. X. Mu, H.Y. Zhou, W.Y. Zhao, D.Q. He, W.T. Zhu, X.L. Nie, Z.G. Sun, and Q.J. Zhang, J. Power Sources 430, 193 (2019).

    Article  CAS  Google Scholar 

  25. A.F. Ioffe and A. Gelbtuch, Semiconductor Thermoelement and Thermoelectric Cooling (London: Infosearch Ltd, 1957).

    Google Scholar 

  26. E. Longo, C. Wiemer, R. Cecchini, M. Longo, A. Lamperti, A. Khanas, A. Zenkevich, M. Fanciulli, and R. Mantovan, J. Magn. Magn. Mater. 474, 632 (2019).

    Article  CAS  Google Scholar 

  27. X.G. Guo, W.T. Zhu, L. Xing, X. Mu, C.C. Li, S.F. Ma, P. Wei, X.L. Nie, Q.J. Zhang, and W.Y. Zhao, J. Electron. Mater. 49, 2689 (2020).

    Article  CAS  Google Scholar 

  28. P. Wei, B. Ke, L. Xing, C.C. Li, S.F. Ma, X.L. Nie, W.T. Zhu, X.H. Sang, Q.J. Zhang, G. Van Tendeloo, and W.Y. Zhao, Mater. Character. 163, 110240 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 91963122 and 51620105014) and the National Key R&D Program of China (No. 2018YFB0703603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wei or Wenyu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wei, P., Zhou, H. et al. Geometrical Structure Optimization Design of High-Performance Bi2Te3-Based Artificially Tilted Multilayer Thermoelectric Devices. J. Electron. Mater. 49, 5980–5988 (2020). https://doi.org/10.1007/s11664-020-08324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08324-2

Keywords

Navigation