Environmentally Stable, Solution-Processed Indium Boron Zinc Oxide Thin-Film Transistors

Abstract

In this work, solution-processed indium-boron-zinc-oxide (IBZO) thin-film transistors (TFT) have been fabricated by spin-coating. Properties such as the dissociation energy, electronegativity, ionic size and Lewis acid strength significantly influence the electrical properties of amorphous oxide active channel layers. Based on this reasoning, boron was chosen as a carrier suppressor to improve mobility and stability of the thin-film transistor. Boron concentration in precursor solution was varied from 0 at.% to 20 at.% while the indium concentration was fixed at 70 at.% and zinc concentration was decreased with respect to boron concentration. The IBZO thin films were deposited using spin-coating and post-annealed at 350°C. X-ray diffraction and high-resolution transmission electron microscopy studies confirmed the amorphous nature of the thin film. All the IBZO films were seen to be highly transparent (∼ 83%) in the visible region. The environmental electrical stability of the indium-zinc-oxide (IZO) and IBZO were studied, which revealed that the IBZO TFT with 10 at.% boron concentration has a saturated field effect mobility of 0.28 cm2 V−1 s−1, threshold voltage of 8 V and ION/IOFF of 8.54 × 105 after 30 days of exposure to ambient atmosphere, with no shift in the turn-on voltage, whereas the IZO TFT exhibited an enormous shift in turn-on voltage from −26 V to −13 V.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    N. Mitoma, S. Aikawa, X. Gao, T. Kizu, M. Shimizu, M.F. Lin, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 104, 102103 (2014).

    Article  Google Scholar 

  3. 3.

    D. Han, Z. Chen, Y. Cong, W. Yu, X. Zhang, and Y. Wang, IEEE Trans. Electron. Dev. 63, 3360 (2016).

    CAS  Google Scholar 

  4. 4.

    Y. Hara, T. Kikuchi, H. Kitagawa, J. Morinaga, H. Ohgami, H. Imai, T. Daitoh, and T. Matsuo, J. Soc. Inf. Disp. 26, 169 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    K. Kaftanoglu, S.M. Venugopal, M. Marrs, A. Dey, E.J. Bawolek, D.R. Allee, and D. Loy, J. Disp. Technol. 7, 339 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    H.Q. Chiang and J.F. Wager, Appl. Phys. Lett. 86, 013503 (2015).

    Article  Google Scholar 

  7. 7.

    M. Nakata, C. Zhao, and J. Kanicki, Solid State Electron. 116, 22 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    R. Fu, J. Yang, W.C. Chang, W.C. Chang, C.M. Chang, D. Lin, Q. Zhang, P.T. Liu, and H.P.D. Shieh, Phys. Status Solidi A 215, 1700785 (2018).

    Article  Google Scholar 

  9. 9.

    M. Nakata, G. Motomura, Y. Nakajim, T. Takei, H. Tsuji, H. Fukagawa, T. Shimizu, T. Tsuzuki, Y. Fujisaki, and T. Yamamoto, J. Soc. Inf. Disp. 24, 3 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    T. Arai, J. Soc. Inf. Disp. 20, 156 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    N. Gong, C. Park, J. Lee, I. Jeong, H. Han, J. Hwang, J. Park, K. Park, H. Jeong, Y. Ha, and Y. Hwang, in SID Symposium Digest of Technical Papers vol. 43, p. 784 (2012).

  12. 12.

    T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mat. 11, 044305 (2010).

    Article  Google Scholar 

  13. 13.

    L. Lu, M. Echizen, T. Nishida, Y. Ishikawa, K. Uchiyama, and Y. Uraoka, AIP Adv. 2, 032111 (2012).

    Article  Google Scholar 

  14. 14.

    K. Kurishima, T. Nabatame, T. Onaya, K. Tsukagoshi, A. Ohi, N. Ikeda, T. Nagata, and A. Ogura, ECS Trans. 86, 135 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    N. Mitoma, S. Aikawa, W. Ou-Yang, X. Gao, T. Kizu, M.F. Lin, A. Fujiwara, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 106, 042106 (2015).

    Article  Google Scholar 

  16. 16.

    T.T. Pham, J. Pernot, G. Perez, D. Eon, E. Gheeraert, and N. Rouger, IEEE Electron. Dev. Lett. 38, 1571 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    S. Arulkumar, S. Parthiban, D. Gnanaprakash, and J.Y. Kwon, J. Mater. Sci.: Mater. Electron. 30, 18696 (2019).

    CAS  Google Scholar 

  18. 18.

    K.A. Stewart, V. Gouliouk, D.A. Keszler, and J.F. Wager, Solid-State Electron. 137, 80 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    S. Gandla, S.R. Gollu, R. Sharma, V. Sarangi, and D. Gupta, Appl. Phys. Lett. 107, 152102 (2015).

    Article  Google Scholar 

  20. 20.

    D.Y. Zhong, J. Li, C.Y. Zhao, C.X. Huang, J.H. Zhang, X.F. Li, X.Y. Jiang, and Z.L. Zhang, IEEE Trans. Electron. Dev. 65, 520 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    D.Y. Zhong, J. Li, Y.H. Zhou, C.X. Huang, J.H. Zhang, X.F. Li, J. Huang, X.Y. Jiang, and Z.L. Zhang, Superlattice Microstruct. 122, 377 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    D. Gupta, M. Katiyar and D. Gupta, in Proceedings of 9th Asian Symposium on Information Display, pp. 425–428 (2006).

  23. 23.

    S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 2007), pp. 375–400.

    Google Scholar 

  24. 24.

    J.F. Wager, D.A. Keszler, and R.E. Presley, Transparent Electronics (New York: Springer, 2008), pp. 110–147.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Science and Technology-Science and Engineering Research Board, Government of India under early career research award (File No. ECR/2016/000785) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Parthiban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arulkumar, S., Parthiban, S., Dharmalingam, G. et al. Environmentally Stable, Solution-Processed Indium Boron Zinc Oxide Thin-Film Transistors. Journal of Elec Materi 49, 5606–5612 (2020). https://doi.org/10.1007/s11664-020-08306-4

Download citation

Keywords

  • Amorphous oxide semiconductor
  • indium zinc oxide
  • solution process
  • thin-film transistor
  • stability