We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Influence of Substrate Thickness on the Electrical Properties of Flexible PbZr0.52Ti0.48O3 Thin Films Grown on Mica

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Large-scale PbZr0.52Ti0.48O3 (PZT) thin films with SrRuO3 (SRO) buffer layers were fabricated on flexible mica substrates of various thicknesses by pulsed laser deposition. X-ray diffraction analysis showed that both the PZT ferroelectric films and SRO buffer layers grew epitaxially with (111) preferred orientation. Extensive study of the influence of substrate thickness on the electrical properties of the PZT films revealed that the remanent polarization, piezoelectric coefficient, and dielectric constant all increased consistently with decreasing substrate thickness. This behavior was attributed to the decreased residual strain in the ferroelectric PZT films and clamping effects from the flexible substrate as the substrate became thinner. Ferroelectric property measurements revealed that the PZT thin films on a typical flexible mica substrate with a thickness of 10 μm possessed high mechanical and thermal stability. No obvious deterioration of the electrical performance of the flexible PZT thin films was observed after repeated bending and release for 104 cycles and over a broad temperature range from 20°C to 170°C during bending. These results indicate that flexible PZT thin films show potential for applications in wearable and implantable ferroelectric memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lu, D.J. Baek, S.S. Hong, L.F. Kourkoutis, Y. Hikita, and H.Y. Hwang, Nat. Mater. 15, 1255 (2016).

    Article  CAS  Google Scholar 

  2. W.X. Gao, L. You, Y.J. Wang, G.L. Yuan, Y.H. Chu, and J.M. Liu, Adv. Electron. Mater. 3, 1600542 (2017).

    Article  Google Scholar 

  3. J. Jiang, Y. Bitla, C.W. Huang, T.H. Do, H.J. Liu, Y.H. Hsieh, C.H. Ma, C.Y. Jang, Y.H. Lai, P.W. Chiu, W.W. Wu, Y.C. Chen, Y.C. Zhou, and Y.H. Chu, Sci. Adv. 3, 1700121 (2017).

    Article  Google Scholar 

  4. G.H. Dong, S.Z. Li, M.T. Yao, Z.Y. Zhou, Y.Q. Zhang, X. Han, Z.L. Luo, J.X. Yao, B. Peng, Z.Q. Hu, H.B. Huang, T.T. Jia, J.Y. Li, W. Ren, Z.G. Ye, X.D. Ding, J. Sun, C.W. Nan, L.Q. Chen, J. Li, and M. Liu, Science 366, 475 (2019).

    Article  CAS  Google Scholar 

  5. J.Y. Wu, Z.S. Liang, C.R. Ma, G.L. Hu, L.K. Shen, Z.X. Sun, Y. Zhang, L. Lu, and M. Liu, IEEE Devices Electr. Lett. 40, 889 (2019).

    Article  CAS  Google Scholar 

  6. L.H. Su, X.B. Lu, L. Chen, Y.J. Wang, G.L. Yuan, J.M. Liu, and A.C.S. Appl, Mater. Interfaces 10, 21428 (2018).

    Article  CAS  Google Scholar 

  7. Y. Bitla and Y.H. Chu, FlatChem 3, 26 (2017).

    Article  CAS  Google Scholar 

  8. T. Amrillah, Y. Bitla, K. Shin, T.N. Yang, Y.H. Hsieh, Y.Y. Chiou, H.J. Liu, T.H. Do, D. Su, Y.C. Chen, S.U. Jen, L.Q. Chen, K.H. Kim, J.Y. Juang, and Y.H. Chu, ACS Nano 11, 6122 (2017).

    Article  CAS  Google Scholar 

  9. Z. Suo, E.Y. Ma, H. Gleskova, and S. Wagner, Appl. Phys. Lett. 74, 1177 (1999).

    Article  CAS  Google Scholar 

  10. K.D. Harris, A.L. Elias, and H.J. Chung, J. Mater. Sci. 51, 2771 (2016).

    Article  CAS  Google Scholar 

  11. C.H. Ahn, J.M. Triscone, N. Archibald, M. Decroux, R.H. Hammond, T.H. Geballe, Ø. Fischer, and M.R. Beasley, Science 269, 5222 (1995).

    Article  Google Scholar 

  12. J. Tang, J. Liu, and H.Q. Huang, J. Electron. Mater. 48, 4033 (2019).

    Article  CAS  Google Scholar 

  13. Y.K. Wang, T.Y. Tseng, and P. Lin, Appl. Phys. Lett. 80, 3790 (2002).

    Article  CAS  Google Scholar 

  14. J.G. Wu, S. Qiao, C.H. Pu, D.Q. Xiao, J. Wang, and J.G. Zhu, Appl. Phys. A 109, 57 (2012).

    Article  CAS  Google Scholar 

  15. J.G. Wu and J. Wang, Acta Mater. 58, 1688 (2010).

    Article  CAS  Google Scholar 

  16. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, and G. Shirane, Phys. Rev. B 61, 8687 (2000).

    Article  CAS  Google Scholar 

  17. C.H. Yang, Y.J. Han, J. Qian, and Z.X. Cheng, Adv. Electron. Mater. 5, 1900443 (2019).

    Article  CAS  Google Scholar 

  18. H.Y. Qi, X. Xia, C.L. Zhou, P.C. Xiao, Y. Wang, and Y.J. Deng, J. Mater. Sci.: Mater. Electron. 31, 3042 (2020).

    CAS  Google Scholar 

  19. D.H. Minh, N.V. Loi, N.H. Duc, and B.N.Q. Trinh, J. Sci. Adv. Mater. Devices 1, 75 (2016).

    Article  Google Scholar 

  20. Y.J. Yu, H.L.W. Chan, F.P. Wang, and L.C. Zhao, Microelectron. Eng. 66, 726 (2003).

    Article  CAS  Google Scholar 

  21. R.E. Cohen, Nature 358, 136 (1992).

    Article  CAS  Google Scholar 

  22. G.T. Hwang, H. Park, J.H. Lee, S.K. Oh, and K.I. Park, Adv. Mater. 26, 4880 (2014).

    Article  CAS  Google Scholar 

  23. K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, and K.J. Lee, Adv. Mater. 26, 2514 (2014).

    Article  CAS  Google Scholar 

  24. D. Marrocchelli, L. Sun, and B. Yildiz, J. Am. Chem. Soc. 137, 4735 (2015).

    Article  CAS  Google Scholar 

  25. A. Herklotz, D. Lee, E.J. Guo, T.L. Meyer, J.R. Petrie, and H.N. Lee, J. Phys.: Condens. Matter 29, 493001 (2017).

    Google Scholar 

  26. C.L. Ren, G.K. Zhong, Q. Xiao, C.B. Tan, M. Feng, X.L. Zhong, F. An, J.B. Wang, M.F. Zi, M.K. Tang, Y. Tang, T.T. Jia, and J.Y. Li, Adv. Funct. Mater. 30, 1906131 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (51801057) and the Natural Science Foundation of Hubei Province of China (2018CFB296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Yang, J., Chen, H. et al. Influence of Substrate Thickness on the Electrical Properties of Flexible PbZr0.52Ti0.48O3 Thin Films Grown on Mica. J. Electron. Mater. 49, 5449–5454 (2020). https://doi.org/10.1007/s11664-020-08288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08288-3

Keywords

Navigation