Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of Electronic Materials
  3. Article

Vacancy Clustering in Dislocation-Free High-Purity Germanium

  • Topical Collection: 18th Conference on Defects (DRIP XVIII)
  • Open Access
  • Published: 30 June 2020
  • volume 49, pages 5097–5103 (2020)
Download PDF

You have full access to this open access article

Journal of Electronic Materials Aims and scope Submit manuscript
Vacancy Clustering in Dislocation-Free High-Purity Germanium
Download PDF
  • Kevin-Peter Gradwohl1,
  • Alexander Gybin1,
  • József Janicskó-Csáthy1,
  • Melissa Roder2,
  • Andreas N. Danilewsky2 &
  • …
  • R. Radhakrishnan Sumathi1 
  • 356 Accesses

  • 1 Citation

  • Explore all metrics

  • Cite this article

Abstract

A germanium crystal of high purity was grown in H2 with a maximum dislocation density of 3000 cm−2, which was estimated by white beam x-ray topography. Due to a dynamical diffraction effect, the topographs revealed the existence of vacancy clusters in the form of voids in dislocation-free parts of the crystal. Etch pit density analysis, the standard technique employed for crystalline wafers to determine dislocation density, failed to reliably represent dislocations in dislocation-free parts of the crystal. On the other hand, we were able to identify a different type of etching pattern for a dislocation-free crystal. Microwave photoconductance decay was utilized to determine the charge carrier lifetime, which was found to be up to 500 μs for regions with dislocations, while being only 100 μs for dislocation-free parts of the crystal.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. N. Abgrall, A. Abramov, N. Abrosimov, I. Abt, M. Agostini, M. Agartioglu, A. Ajjaq, S. Alvis, F. Avignone III, X. Bai, M. Balata, I. Barabanov, A.S. Barabash, P.J. Barton, L. Baudis, L. Bezrukov, T. Bode, A. Bolozdynya, D. Borowicz, A. Boston, H. Boston, S.T.P. Boyd, R. Breier, V. Brudanin, R. Brugnera, M. Busch, M. Buuck, A. Caldwell, T.S. Caldwell, T. Camellato, M. Carpenter, C. Cattadori, J. Cederkäll, Y.-D. Chan, S. Chen, A. Chernogorov, C.D. Christofferson, P.-H. Chu, R.J. Cooper, C. Cuesta, E.V. Demidova, Z. Deng, M. Deniz, J.A. Detwiler, N. Di Marco, A. Domula, Q. Du, Yu. Efremenko, V. Egorov, S.R. Elliott, D. Fields, F. Fischer, A. Galindo-Uribarri, A. Gangapshev, A. Garfagnini, T. Gilliss, M. Giordano, G.K. Giovanetti, M. Gold, P. Golubev, C. Gooch, P. Grabmayr, M.P. Green, J. Gruszko, I.S. Guinn, V.E. Guiseppe, V. Gurentsov, Y. Gurov, K. Gusev, J. Hakenmüeller, L. Harkness-Brennan, Z. R. Harvey, C. R. Haufe, L. Hauertmann, D. Heglund, L. Hehn, A. Heinz, R. Hiller, J. Hinton, R. Hodak, W. Hofmann, S. Howard, M.A. Howe, M. Hult, L.V. Inzhechik, J. Janicskó Csáthy, R. Janssens, M. Ješkovský, J. Jochum, H.T. Johansson, D. Judson, M. Junker, J. Kaizer, K. Kang, V. Kazalov, Y. Kermadic, F. Kiessling, A. Kirsch, A. Kish, A. Klimenko, K.T. Knöpfle, O. Kochetov, S.I. Konovalov, I. Kontul, V.N. Kornoukhov, T. Kraetzschmar, K. Kröninger, A. Kumar, V.V. Kuzminov, K. Lang, M. Laubenstein, A. Lazzaro, Y. L. Li, Y.-Y. Li, H.B. Li, S.T. Lin, M. Lindner, I. Lippi, S.K. Liu, X. Liu, J. Liu, D. Loomba, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, H. Ma, B. Majorovits, F. Mamedov, R.D. Martin, R. Massarczyk, J.A.J. Matthews, N. McFadden, D.-M. Mei, H. Mei, S.J. Meijer, D. Mengoni, S. Mertens, W. Miller, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, J. Myslik, I. Nemchenok, T. Nilsson, P. Nolan, C. O’Shaughnessy, G. Othman, K. Panas, L. Pandola, L. Papp, K. Pelczar, D. Peterson, W. Pettus, A.W.P. Poon, P.P. Povinec, A. Pullia, X.C. Quintana, D.C. Radford, J. Rager, C. Ransom, F. Recchia, A.L. Reine, S. Riboldi, K. Rielage, S. Rozov, N.W. Rouf, E. Rukhadze, N. Rumyantseva, R. Saakyan, E. Sala, F. Salamida, V. Sandukovsky, G. Savard, S. Schönert, A.-K. Schütz, O. Schulz, M. Schuster, B. Schwingenheuer, O. Selivanenko, B. Sevda, B. Shanks, E. Shevchik, M. Shirchenko, F. Simkovic, L. Singh, V. Singh, M. Skorokhvatov, K. Smolek, A. Smolnikov, A. Sonay, M. Spavorova, I. Stekl, D. Stukov, D. Tedeschi, J. Thompson, T. Van Wechel, R.L. Varner, A.A. Vasenko, S. Vasilyev, A. Veresnikova, K. Vetter, K. von Sturm, K. Vorren, M. Wagner, G.-J. Wang, D. Waters, W.-Z. Wei, T. Wester, B.R. White, C. Wiesinger, J.F. Wilkerson, M. Willers, C. Wiseman, M. Wojcik, H.T. Wong, J. Wyenberg, W. Xu, E. Yakushev, G. Yang, C.-H. Yu, Q. Yue, V. Yumatov, J. Zeman, Z. Zeng, I. Zhitnikov, B. Zhu, D. Zinatulina, A. Zschocke, A.J. Zsigmond, K. Zuber, and G. Zuzel, in AIP Conference Proceedings (2017) p. 020027.

  2. E.E. Haller, W.L. Hansen, and F.S. Goulding, Adv. Phys. 30, 93 (1981).

    Article  CAS  Google Scholar 

  3. I. Yonenaga, Germanium Crystals: Single Crystals of Electronic Materials (Sawston: Woodhead Publishing, 2019), pp. 89–127.

    Book  Google Scholar 

  4. A.G. Tweet, J. Appl. Phys. 29, 1520 (1958).

    Article  CAS  Google Scholar 

  5. J. Vanhellemont, P. Spiewak, and K. Sueoka, J. Appl. Phys. 101, 036103 (2007).

    Article  Google Scholar 

  6. P. Spiewak, K. Sueoka, J. Vanhellemont, K. Kurzydlowski, K. Mlynarczyk, P. Wabinski, and I. Romandic, Physica B 401, 205 (2007).

    Article  Google Scholar 

  7. F. Frank and D. Turnbull, Phys. Rev. 104, 617 (1956).

    Article  CAS  Google Scholar 

  8. G. Wang, Y. Guan, H. Mei, D. Mei, G. Yang, J. Govani, and M. Khizar, J. Cryst. Growth 393, 54 (2014).

    Article  CAS  Google Scholar 

  9. G. Wang, H. Mei, D. Mei, Y. Guan, and G. Yang, J. Phys. Conf. Ser. 606, 012012 (2015).

    Article  Google Scholar 

  10. N. Abrosimov, M. Czupalla, N. Dropka, J. Fischer, A. Gybin, K. Irmscher, J. Janicsko-Csathy, U. Juda, S. Kayser, and W. Miller, J. Cryst. Growth 532, 125396 (2020).

    Article  Google Scholar 

  11. W. Miller, N. Abrosimov, J. Fischer, A. Gybin, U. Juda, S. Kayser, and J. Janicsko-Csathy, Crystals 10, 18 (2020).

    Article  CAS  Google Scholar 

  12. A. Rack, T. Weitkamp, S.B. Trabelsi, P. Modregger, A. Cecilia, T. dos Santos Rolo, T. Rack, D. Haas, R. Simon, and R. Heldele, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 267, 978 (2009).

    Article  Google Scholar 

  13. X. Huang, J. Appl. Crystallogr. 43, 926 (2010).

    Article  CAS  Google Scholar 

  14. K. Dornich, Ph.D. thesis, TU Bergakademie Freiberg (2006).

  15. G. Beck and M. Kunst, Rev. Sci. Instrum. 57, 197 (1986).

    Article  CAS  Google Scholar 

  16. M. Kunst and G. Beck, J. Appl. Phys. 60, 3558 (1986).

    Article  CAS  Google Scholar 

  17. K. Lauer, A. Laades, H. Ubensee, H. Metzner, and A. Lawerenz, J. Appl. Phys. 104, 104503 (2008).

    Article  Google Scholar 

  18. W.C. Dash, J. Appl. Phys. 30, 459 (1959).

    Article  CAS  Google Scholar 

  19. A. Authier and C. Malgrange, Acta Crystallogr. A Found. Crystallogr. 54, 806 (1998).

    Article  Google Scholar 

  20. A. Authier, International Tables for Crystallography (Dordrecht: Springer, 2006), pp. 626–646.

    Book  Google Scholar 

  21. B.K. Tanner, X-ray diffraction topography, Vol. 84 (Oxford: Pergamon Press, 1976).

    Google Scholar 

  22. P. Penning and D. Polder, Philips Res. Rep 16, 419 (1961).

    CAS  Google Scholar 

  23. T. Tuomi, R. Rantamaki, P. McNally, D. Lowney, A. Danilewsky, and P. Becker, J. Phys. D Appl. Phys. 34, A133 (2001).

    Article  CAS  Google Scholar 

  24. R.D. Deslattes, E.G. Kessler Jr, S. Owens, D. Black, and A. Henins, J. Phys. D Appl. Phys. 32, A3 (1999).

    Article  CAS  Google Scholar 

  25. A. Voloshin, I. Smolskii, V. Kaganer, V. Indenbom, and V. Rozhanskii, Phys. Status Solidi A 130, 61 (1992).

    Article  CAS  Google Scholar 

  26. S. Hens, J. Vanhellemont, D. Poelman, P. Clauws, I. Romandic, A. Theuwis, F. Holsteyns, and J. Van Steenbergen, Appl. Phys. Lett. 87, 061915 (2005).

    Article  Google Scholar 

  27. M. Van Sande, L. Van Goethem, L. De Laet, and H. Guislain, Appl. Phys. A 40, 257 (1986).

    Article  Google Scholar 

Download references

Acknowledgments

Open Access funding provided by Projekt DEAL. We thank the Karlsruhe Institute of Technology for the beam time at the Karlsruhe Research Accelerator synchrotron for investigation of our samples in the framework of the BIRD contract. We acknowledge the support of the German Federal Ministry for Education and Research (BMBF) within the collaborative project GERDA, under the Grant No.05A17BC1. The authors thank Dr. Uta Juda from the Leibniz-Institut für Kristallzüchtung for the support and help in the EPD analysis.

Author information

Authors and Affiliations

  1. Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Str. 2, 12489, Berlin, Germany

    Kevin-Peter Gradwohl, Alexander Gybin,  József Janicskó-Csáthy & R. Radhakrishnan Sumathi

  2. Kristallographie, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 5, 79104, Freiburg, Germany

    Melissa Roder & Andreas N. Danilewsky

Authors
  1. Kevin-Peter Gradwohl
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexander Gybin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. József Janicskó-Csáthy
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Melissa Roder
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Andreas N. Danilewsky
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. R. Radhakrishnan Sumathi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to R. Radhakrishnan Sumathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gradwohl, KP., Gybin, A., Janicskó-Csáthy, . et al. Vacancy Clustering in Dislocation-Free High-Purity Germanium. J. Electron. Mater. 49, 5097–5103 (2020). https://doi.org/10.1007/s11664-020-08260-1

Download citation

  • Received: 17 February 2020

  • Accepted: 09 June 2020

  • Published: 30 June 2020

  • Issue Date: September 2020

  • DOI: https://doi.org/10.1007/s11664-020-08260-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • High-purity germanium
  • dislocations
  • vacancies
  • voids
  • crystal growth

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

18th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVIII)

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature