Skip to main content
Log in

Structural, Optical and Decay Properties of Zinc(II) 8-Hydroxyquinoline and Its Thin Film

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc(II) 8-hydroxyquinoline (Znq2) green luminescent material and its blended thin film in a poly(methyl methacrylate) (PMMA) matrix have been prepared. XRD analysis confirms the formation of the compound and its presence in the PMMA blended thin film. The orbital molecular geometry, quantum chemical calculations and band gap energy of Znq2 phosphor have been confirmed from the DFT study. The morphology of the phosphor was shown by the SEM images. UV–Vis absorption, photoluminescence and decay analysis of zinc(II) 8-hydroxyquinoline phosphor confirms its suitability as a green emitter for organic light-emitting diodes. Uniform distribution of Znq2 powder in the PMMA matrix and its roughness was estimated by AFM analysis. Luminescence decay study was utilized to demonstrate its lifetime analysis by the time-correlated single-photon counting (TCSPC) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sim, C.K. Moon, and J.J. Kim, ACS Appl. Mater. Interfaces. 8, 3301 (2016).

    Article  Google Scholar 

  2. B. Geffroy, P. Roy, and C. Prat, Polym. Int. 55, 572 (2006).

    Article  CAS  Google Scholar 

  3. H. Gregory and M.R. Bryce, J. Mater. Chem. 15, 94 (2005).

    Article  Google Scholar 

  4. B. Lebeau and P. Innocenzi, Chem. Soc. Rev. 40, 886 (2011).

    Article  CAS  Google Scholar 

  5. M. Rajeswaran and T.N. Blanton, J of Chem Crysta 35, 71 (2005).

    Article  CAS  Google Scholar 

  6. D. Painuly, D.T. Masram, M.E. Rabanal, and I.M. Nagpure, J. Lumin. 192, 1180 (2017).

    Article  CAS  Google Scholar 

  7. I.M. Nagpure, M.M. Duvenhage, S.S. Pitale, O.M. Ntwaeaborwa, J.J. Terblans, and H.C. Swart, J. Fluoresc. 22, 1271 (2012).

    Article  CAS  Google Scholar 

  8. D. Painuly, N.K. Mogh, R. Singhal, P. Kandwal, D.T. Masram, M.E. Rabanal, and I.M. Nagpure, Opt. Mater. 82, 175 (2018).

    Article  CAS  Google Scholar 

  9. C.P. Bolívar, S. Takizawa, G. Nishimura, V.A. Montes, and P. Anzenbacher Jr, Chem. Eur. J. 17, 9076 (2011).

    Article  Google Scholar 

  10. D. Painuly, N.K. Mogha, D.T. Masram, R. Singhal, R.S. Gedam, and I.M. Nagpure, J. Phys. Chem. Solids 121, 396 (2018).

    Article  CAS  Google Scholar 

  11. L.S. Sapochak, F.E. Benincasa, R.S. Schofield, J.L. Baker, K.K.C. Riccio, D. Fogarty, H. Kohlmann, F. Kim, and P.E. Burrows, J. Am. Chem. Soc. 124, 6119 (2002).

    Article  CAS  Google Scholar 

  12. I.M. Nagpure, D. Painuly, and M.E. Rabanal, AIP Conf. Proc. 1728, 020453:1–7 (2016).

  13. G. Xu, Y.B. Tang, C.H. Tsang, J.A. Zapien, C.S. Lee, and N.B. Wong, Mater. Chem. 20, 3006 (2010).

    Article  CAS  Google Scholar 

  14. R. Wang, Y. Cao, D. Jia, L. Liu, and F. Li, Opt. Mater. 36, 232 (2013).

    Article  CAS  Google Scholar 

  15. Y. Hamada, T. Sano, T. Fujita, Y. Nishio, and K. Shibata, J. Appl. Phys. 32, 514 (1993).

  16. M. Ghedini, M.L. Deda, I. Aiello, and A. Grisolia, Inorg. Chim. Acta 357, 33 (2004).

    Article  CAS  Google Scholar 

  17. V.P. Barberis and J.A. Mikroyannidis, Synth. Met. 156, 856 (2006).

    Article  Google Scholar 

  18. T.A. Hopkins, K. Meerholz, S. Shaheen, M.L. Anderson, A. Schmidt, B. Kippelen, A.B. Padias, H.K. Hall, N. Peyghambarian, and N.R. Armstrong, Chem. Mater. 8, 344 (1996).

    Article  CAS  Google Scholar 

  19. M. Ghedini, M.L. Dedai, A. Aiello, and I. Grisolia, Synth. Met. 138, 189 (2003).

    Article  CAS  Google Scholar 

  20. Y. Kai, M. Morita, N. Yasuoka, and K. Nobutami, Bull. Chem. Soc. Jpn 58, 1631 (1985).

    Article  CAS  Google Scholar 

  21. X.H. Wang, M.W. Shao, and L. Liu, Synth. Met. 160, 718 (2010).

    Article  CAS  Google Scholar 

  22. A. Kadhim, H.R. Humud, and L.A.A. Kareem, IJOCAAS 1, 21 (2016).

    Article  Google Scholar 

  23. H.M. Zidan and M. Abu-Elnader, Phys. B 355, 308 (2005).

    Article  CAS  Google Scholar 

  24. R. Murri, L. Schiavulli, N. Pinto, and T. Ligonzo, J. Non Cryst. Solids 60, 139 (1992).

    Google Scholar 

  25. P. Płóciennik, D. Guichaoua, A. Korcala, and A. Zawadzka, Opt. Mater. 56, 49 (2016).

    Article  Google Scholar 

  26. R.R. Vivas, F.Z. Núñez, and E. Martínez, Org. Electron. 9, 625 (2008).

    Article  Google Scholar 

  27. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery Jr, J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  28. K. Singh, A. Kumar, R. Srivastava, and P.S. Kadyan, Opt. Mater. 34, 221 (2011).

    Article  CAS  Google Scholar 

  29. A. Zawadzka, P. Płociennik, J. Strzelecki, Z. łukasiak, and B. Sahraoui, Opt. Mater. 36, 91 (2014).

    Article  Google Scholar 

  30. M.M. Duvenhage, O.M. Ntwaeaborwa, and H.C. Swart, Mater Toady Proc 2, 4019 (2015).

    Article  Google Scholar 

  31. V.K. Shukla and S. Kumar, Synt. Met. 160, 450 (2010).

    Article  CAS  Google Scholar 

  32. G.Z. Yuan, Y.P. Huo, X.L. Nie, X.M. Fang, and S.Z. Zhu, Tetrahedron 68, 8018 (2012).

    Article  CAS  Google Scholar 

  33. A.B. Djurisic, T.W. Lau, S.M. Lam, and W.K. Chan, Appl. Phys. A 78, 375 (2004).

    Article  CAS  Google Scholar 

  34. G. Soni, S. Srivastava, P. Soni, P. Kalotra, and Y.K. Vijay, Mater. Res. Exp. 5, 015302 (2018).

    Article  Google Scholar 

  35. T. Tsuboi, Y. Nakai, and Y. Torii, Cent. Eur. J. Phys. 10, 524 (2012).

    CAS  Google Scholar 

  36. Y. Dua, Y. Fu, Y. Shi, and L. Xiaodan, J. Sol. Sta. Chem. 182, 1430 (2009).

    Article  Google Scholar 

  37. L.S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G.T. Schmett, J. Marshall, D. Fogarty, P.E. Burrows, and S.R. Forrest, J. Am. Chem. Soc. 123, 6300 (2001).

    Article  CAS  Google Scholar 

  38. A. Meyers and M. Weck, Macromolecule 36, 1766 (2003).

    Article  CAS  Google Scholar 

  39. L.C. Palilis, J.S. Melinger, M.A. Wolak, and Z.H. Kafafi, J. Phys. Chem. B 109, 5456 (2005).

    Article  CAS  Google Scholar 

  40. D.Z. Garbuzov, V. Bulovic, P.E. Burrows, and S.R. Forrest, Chem. Phys. Lett. 249, 433 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the DST (SERB) (Sanction Project Ref. No. SB/FTP/PS-006/2014, dt.17/03/2015) for the financial assistance and the Director, NIT Uttarakhand, for his constant encouragement and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Nagpure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Painuly, D., Singhal, R., Kandwal, P. et al. Structural, Optical and Decay Properties of Zinc(II) 8-Hydroxyquinoline and Its Thin Film. J. Electron. Mater. 49, 6096–6106 (2020). https://doi.org/10.1007/s11664-020-08255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08255-y

Keywords

Navigation