Skip to main content
Log in

Preparation and Characterization of Conductive Cotton Fabric Impregnated with Single-Walled Carbon Nanotubes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotube (SWCNT)-conductive cotton fabric was prepared by a simple infusion method. The SWCNTs became strongly attached to the cotton fibers due to the surface functional groups forming a network on the cotton surface. As a result, the fabric exhibited enhanced electrical conductivity with a low value of sheet resistance (0.006 Ω). Moreover, the conductive cotton fabric displayed a reversible stable state transition at approximately 75°C, where the resistance of the fabric transitioned from metal to semiconductor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.K. Little, Y. Li, V. Cammarata, R. Broughton, and G. Mills, ACS Appl. Mater. Interfaces. 3, 1965 (2011).

    CAS  Google Scholar 

  2. C.H. Xue, J. Chen, J.W. Yin, S.T. Jia, and J.Z. Ma, Appl. Surf. Sci. 258, 2468 (2012).

    CAS  Google Scholar 

  3. F.A. Alamer, J Alloys Compd. 702, 266 (2017).

    Google Scholar 

  4. F.A. Alamer, Cellulose 25, 6221 (2018).

    Google Scholar 

  5. F.A. Alamer, J. Electr. Mater. 48, 261 (2019).

    Google Scholar 

  6. F.A. Alamer, Cellulose 25, 2075 (2018).

    CAS  Google Scholar 

  7. M.T. Otley, Fahad A. Alamer, Y. Guo, J. Santana, E. Eren, M. Li, J. Lombardi, and G.A. Sotzing, Macromol. Mater. Eng. 3, 1600348 (2017).

    Google Scholar 

  8. Fahad A. Alamer, N.M. Badawi, A. Alodhayb, R.M. Okasha, and N.A. Kattan, Cellulose 27, 531 (2020).

    Google Scholar 

  9. S.K. Sinha, F.A. Alamer, S.J. Woltornist, Y. Noh, F. Chen, A. McDannald, C. Allen, R. Daniels, A. Deshmukh, M. Jain, K. Chon, D.H. Adamson, and G.A. Sotzing, ACS Appl. Mater. Interface 11, 32339 (2019).

    CAS  Google Scholar 

  10. S.J. Woltornist, F.A. Alamer, A. McDannald, M. Jain, G.A. Sotzing, and D.H. Adamson, Carbon 81, 38–41 (2014).

    Google Scholar 

  11. L. Zou, C. Lan, X. Li, S. Zhang, Y. Qiu, and Y. Ma, Fibers Polym. 16, 2158 (2015).

    CAS  Google Scholar 

  12. S. Wang, R. Liang, and B. Wang, Carbon 47, 53 (2009).

    CAS  Google Scholar 

  13. K.H. Kim, Y. Oh, and M.F. Islam, Adv. Funct. Mater. 23, 377 (2013).

    CAS  Google Scholar 

  14. J. Kim, M. Kim, H. Kim, J. Joo, and J.H. Choi, Opt. Mater. 21, 147–151 (2002).

    Google Scholar 

  15. K. Wang, P. Zhao, X. Zhou, H. Wu, and Z. Wei, J. Mater. Chem. 21, 16373 (2011).

    CAS  Google Scholar 

  16. X. Ke, T. XiaoJun, W.C. Dong, L. Jian, L.M. Xin, D.Z. Li, and S. China, Phys. Mech. Astron. 56, 3 (2013).

    Google Scholar 

  17. C. Feng, K. Liu, J.S. Wu, L. Liu, J.S. Cheng, Y. Zhang, Y. Sun, Q.Q. Li, S. Fan, and K. Jiang, Adv. Funct. Mater. 20, 885–891 (2010).

    CAS  Google Scholar 

  18. A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S.W. Joo, Nanoscale Res. Lett. 9, 393 (2014).

    Google Scholar 

  19. K. Kerman, M. Saito, E. Tamiy, S. Yamamur, and Y. Takamur, Trends Anal. Chem. 27, 7 (2008).

    Google Scholar 

  20. M. Tian, Y. Huang, W. Wang, and R. Li, J. Mater. 29, 1288 (2014).

    CAS  Google Scholar 

  21. K. Cherenack and L. van Pieterson, J. Appl. Phys. 112, 091301 (2012).

    Google Scholar 

  22. A. Yetisen, H. Qu, A. Manbachi, H. Butt, M. Dokmeci, J. Hinestroza, M. Skorobogatiy, A. Khademhosseini, and S. Yu, Nanotechnol. Textiles 10, 3042 (2016).

    CAS  Google Scholar 

  23. Y. Huang, Y. Wang, L. Gao, X. He, P. Liu, and C. Liu, J. Mater. Sci.: Mater. Electron. 28, 4279 (2017).

    CAS  Google Scholar 

  24. X. Guo, Y. Huang, C. Wu, L. Mao, Y. Wang, Z. Xie, C. Liu, and Y. Zhang, Smart Mater. Struct. 26, 10 (2017).

    Google Scholar 

  25. M. Pasta, F.L. Manti, L. Hu, H.D. Deshazer, and Y. Cui, Nano Res 3, 452 (2010).

    CAS  Google Scholar 

  26. L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, and Y. Cui, Nano Lett. 10, 708–714 (2010).

    CAS  Google Scholar 

  27. P. Wan, X. Wen, C. Sun, B.K. Chandran, H. Zhang, X. Sun, and X. Chen, Small 11, 5409–5415 (2015).

    CAS  Google Scholar 

  28. C. Xing, G. Jing, X. Liang, M. Qiu, Z. Li, R. Cao, X. Li, D. Fana, and H. Zhang, Nanoscale 9, 8096 (2017).

    CAS  Google Scholar 

  29. T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Oming, Small 12, 3748 (2016).

    CAS  Google Scholar 

  30. Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sunc, and H. Zhang, Nanoscale 8, 13273 (2016).

    CAS  Google Scholar 

  31. Z. Zhang, Y. Liua, L. Rena, H. Zhang, Z. Huang, X. Qi, and X. Weia, Electrochim. Acta 200, 142 (2016).

    CAS  Google Scholar 

  32. S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, and P. Wan, Small 11, 5807 (2015).

    CAS  Google Scholar 

  33. X. Guo, Y. Huang, C. Wu, L. Mao, Y. Wang, Z. Xie, C. Liu, and Y. Zhang, Smart Mater. Struct. 26, 105036 (2017).

    Google Scholar 

  34. P. Ilanchezhiyan, A.S. Zakirov, G. Mohan Kumar, S.U. Yuldashev, H.D. Cho, T.W. Kang, and A.T. Mamadalimov, RSC Adv. 5, 10697 (2015).

    CAS  Google Scholar 

  35. S. Luo and T. Liu, Carbon 59, 315 (2013).

    CAS  Google Scholar 

  36. J.S. Heo, J. Eom, Y.H. Kim, and S.K. Park, Small 14, 1703034 (2018).

    Google Scholar 

  37. L. Cai, J. Li, P. Luan, H. Dong, D. Zhao, Q. Zhang, X. Zhang, M. Tu, Q. Zeng, and W. Zhou, Adv. Funct. Mater. 22, 5238 (2012).

    CAS  Google Scholar 

  38. R.K. Hiremath, M.K. Rabinal, and B.G. Mulimani, Rev. Sci. Instrum. 77, 126106 (2006).

    Google Scholar 

  39. Y. Wang, D. Wang, Y. Song, L. Zhao, N. Rahoui, B. Jiang, and Y. Huang, High Perform. Polym. 30, 511 (2017).

    Google Scholar 

  40. L.I. Nasibulina, I.V. Anoshkin, A.G. Nasibulin, A. Cwirzen, V. Penttala, and E.I. Kauppinen, J. Nanomater. 1, 169262 (2012).

    Google Scholar 

  41. Y.H. Zang and S. Sapieha, Polymer 32, 489 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Alhashmi Alamer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhashmi Alamer, F., Badawi, N.M. & Alsalmi, O. Preparation and Characterization of Conductive Cotton Fabric Impregnated with Single-Walled Carbon Nanotubes. J. Electron. Mater. 49, 6582–6589 (2020). https://doi.org/10.1007/s11664-020-08254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08254-z

Keywords

Navigation