Skip to main content
Log in

Solution Combustion Synthesis of Bi2Mo3O12 and Bi2Mo3O12/MoO3 Composites with Enhanced Photocatalytic Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we synthesized Bi2Mo3O12 and Bi2Mo3O12/MoO3 composites through a simple solution combustion synthesis (SCS) route. The structure, morphology, and photocatalytic property for the degradation of Congo Red (CR) were characterized by x-ray diffraction, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and ultraviolet–visible spectrophotometer absorption spectroscopy. The phases of the samples were characterized to be Bi2Mo3O1and Bi2Mo3O12/MoO3. The SEM results showed Bi2Mo3O12 particles were uniformly distributed on the MoO3 sheets. Bi2Mo3O12 and MoO3 in the Bi2Mo3O12/MoO3 composites were clearly demonstrated by the lattice spacing from high-resolution transmission electron microscopy results. The maximum degradation rate of Bi2Mo3O12/MoO3 composite was 83% at 60 min, showing excellent photocatalytic performance. A possible mechanism is proposed for the degradation of CR over Bi2Mo3O12/MoO3 composites, in which h+ and ·O2− are the main active species and play an important role in the degradation of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, X.T. Zhang, and D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008).

    CAS  Google Scholar 

  2. K. Hashimoto, H. Lrie, and A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005).

    CAS  Google Scholar 

  3. H. Michael, S.T. Martin, W. Choi, and D.W. Bahnemam, Chem. Rev. 95, 69 (1995).

    Google Scholar 

  4. A. Mills, R.H. Davies, and D. Worsley, Chemlnform 22, 417 (1993).

    CAS  Google Scholar 

  5. T. Yoon, M. Ischay, and J. Du, Nat. Chem. 2, 527 (2010).

    CAS  Google Scholar 

  6. T. Liu, B. Li, and Y. Hao, Chem. Eng. J. 244, 382 (2014).

    CAS  Google Scholar 

  7. A. Kudo, Catal. Surv. Asia 31, 7 (2003).

    Google Scholar 

  8. Y. Shi, S. Feng, and C. Cao, Mater. Lett. 44, 215 (2000).

    CAS  Google Scholar 

  9. Y. Yan, Z. Zhou, Y. Cheng, L. Qiu, C. Gao, and J. Zhou, J. Alloys Compd. 605, 102 (2014).

    CAS  Google Scholar 

  10. J.L. Shi, Chemlnform 113, 2139 (2013).

    CAS  Google Scholar 

  11. Z. Wang, W. Wang, M. Shang, and W. Yin, J. Hazard. Mater. 177, 1013 (2010).

    Google Scholar 

  12. Y. Tian, F. Cheng, X. Zhang, F. Yan, B. Zhou, Z. Chen, J. Liu, F. Xi, and X. Dong, Powder Technol. 267, 126 (2014).

    CAS  Google Scholar 

  13. S. Meng, W. Wang, J. Ren, S. Sun, and L. Zhang, Nanoscale 3, 1474 (2011).

    Google Scholar 

  14. L. Zhang, D. Jiang, X. Xiang, and X. Li, CrystEngComm 17, 516 (2014).

    Google Scholar 

  15. X. Du, X. Wang, and Y. Liu, CrystEngComm 20, 46 (2018).

    Google Scholar 

  16. S. Yu, G. Zhang, Y. Gao, and B. Huang, J. Colloid Interface Sci. 354, 322 (2011).

    CAS  Google Scholar 

  17. A. Cruz, S.M. Villarreal, L.M. Torres-Martinez, E. Cuellar, and U.O. Mendez, Mater. Chem. Phys. 112, 679 (2008).

    Google Scholar 

  18. A.M. Cruz and S.O. Alfaro, Solid State Sci. 11, 829 (2009).

    Google Scholar 

  19. A. Ghule, S. Tzing, J. Chang, K. Ghule, H. Chang, and Y.C. Ling, Eur. J. Inorg. Chem. 8, 1753 (2004).

    Google Scholar 

  20. G. Zhu, W. Que, and J. Zhang, J. Alloys Compd. 509, 9479 (2011).

    CAS  Google Scholar 

  21. Y. Li, Z. Zhang, Y. Zhang, X. Sun, J. Zhang, C. Wang, Z. Peng, and H. Si, Ceram. Int. 40, 13275 (2014).

    CAS  Google Scholar 

  22. S. Lou, J. Scott, A. Lwase, R. Amal, and Y. Ng, J. Mater. Chem. A 4, 6964 (2016).

    CAS  Google Scholar 

  23. Y. Hao, F. Li, F. Chen, M. Chai, R. Liu, and X. Wang, Mater. Lett. 124, 1 (2014).

    CAS  Google Scholar 

  24. M. Gui, W. Zhang, Q. Su, and C. Chen, J. Solid State Chem. 184, 1977 (2011).

    CAS  Google Scholar 

  25. Z. Li, X. Chen, and Z. Xue, J. Colloid Interface Sci. 394, 69 (2013).

    CAS  Google Scholar 

  26. S. Cao, C. Chen, T. Liu, Y. Tsang, X. Zhang, W. Yu, and W. Chen, Chem. Eng. J. 257, 306 (2014).

    Google Scholar 

  27. X. Wu, Y. Ng, X. Wen, H. Chung, R. Wong, Y. Du, S. Dou, R. Amal, and J. Scott, Chem. Eng. J. 353, 636 (2018).

    CAS  Google Scholar 

  28. F. Zhang, X. Dong, X. Cheng, Y. Xu, X. Zhang, L. Huo, and A.C.S. Appl, Mater. Interfaces 11, 11755 (2019).

    CAS  Google Scholar 

  29. A.S. Mukasyan, P. Epstein, P. Dinka, and P. Combust, Inst. 31, 1789 (2007).

    Google Scholar 

  30. A.S. Mukasyan and P. Dinka, Int. J. Self-Propag. High-Temp Synth. 16, 23 (2007).

    CAS  Google Scholar 

  31. K. Rajeshwar and N.D. Tacconi, Chem. Soc. Rev. 7, 344 (2017).

    Google Scholar 

  32. J. Yu, Y. Ni, and M. Zhai, J. Phys. Chem. Solids 118, 119 (2018).

    Google Scholar 

  33. Q. He, Y.H. Ni, and S.Y. Ye, RSC Adv. 7, 27089 (2017).

    CAS  Google Scholar 

  34. F. Davar, M. Mohammadikish, M. Estarki, and Z. Hamidi, CrystEngComm 14, 7338 (2012).

    CAS  Google Scholar 

  35. J. Hou, Z. Wang, S. Jiao, H. Zhu, and H. Zhu, J. Hazard. Mater. 192, 1772 (2011).

    CAS  Google Scholar 

  36. Y. Shi, L. Luo, Y. Zhang, S.W.L. Li, and Y. Long, J. Ceram. Int. 43, 7627 (2017).

    CAS  Google Scholar 

  37. A.T. Gadhi, A.G. Hernández, M. Bizarro, P. Jagdale, A. Tagliaferro, and S. Rodil, Ceram. Int. 42, 13065 (2016).

    CAS  Google Scholar 

  38. Y. Huang, S. Kang, Y. Yang, H. Qin, Z. Ni, S. Yang, and X. Li, Appl. Catal. B 196, 89 (2016).

    CAS  Google Scholar 

  39. X. Xiao, R. Hu, S. Tu, C. Zheng, H. Zhong, X. Zuo, and J. Nan, CrystEngComm 5, 38373 (2015).

    CAS  Google Scholar 

  40. H. Li, J. Liu, J. Qian, Q. Li, and J. Yang, Chin. J. Catal. 35, 1578 (2014).

    CAS  Google Scholar 

  41. T.S. Sian and G.B. Reddy, Sol. Energy Mater. Sol. Cells 82, 375 (2004).

    CAS  Google Scholar 

  42. Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B 110, 17790 (2006).

    CAS  Google Scholar 

  43. M. Long, W. Cai, and H. Kisch, Chem. Phys. Lett. 461, 102 (2008).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Fundamental Research Funds for the Central Universities (2019ZDPY20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuanru Ren or Xiaohong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Du, X., Shang, Z. et al. Solution Combustion Synthesis of Bi2Mo3O12 and Bi2Mo3O12/MoO3 Composites with Enhanced Photocatalytic Properties. J. Electron. Mater. 49, 5346–5352 (2020). https://doi.org/10.1007/s11664-020-08252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08252-1

Keywords

Navigation