Skip to main content

Advertisement

Log in

Improved Thermoelectric Performance in TiO2 Incorporated Polyaniline: A Polymer-Based Hybrid Material for Thermoelectric Generators

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Enhanced thermoelectric performances have been achieved in hybrid nanocomposites of TiO2 incorporated into electrically conductive polyaniline (PANI) through a chemical polymerization process, for next-generation energy sources. Different weight percentages of TiO2 were used in hybrid nanocomposites and their charge transport properties were studied to understand the consequence of TiO2 incorporation in the PANI matrix. Aniline was used as reactant, and ammonium peroxydisulfate as polymerizing agent during synthesis process. The hybrid composites of TiO2 incorporated PANI were studied by using X-ray diffraction pattern, Fourier transform-infrared spectra and scanning electron microscopic images. The thermoelectric characteristics of this PANI-based composite were much improved as compared to pure PANI. The ordered chain structures of PANI, and the decrease of carrier hopping barrier with incorporation of TiO2 nanoparticles in the PANI chain matrix improved the charge carrier conduction and lead towards enhanced thermoelectric properties of these materials. The maximum Seebeck coefficient (S) as recorded 1.767 mV/°C, was fivefold larger as compared with pure PANI. The analysis of results reveal that these hybrid composites are potential candidates for next-generation thermoelectric generators with their light weight, environmentally friendly nature and cost-effectiveness for energy harvesting applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    CAS  Google Scholar 

  2. S. Shin, S. Bang, J. Choi, H.J. Son, H. Yoon, H. Yun, J.H. Choi, and D. Wee, Int. J. Energy Res. 39, 851 (2015).

    Google Scholar 

  3. H. Hazama, Y. Masuoka, A. Suzumura, M. Matsubara, S. Tajima, and R. Asahi, Appl. Energy 226, 381 (2018).

    CAS  Google Scholar 

  4. L. Li, S. Xu, and G. Li, Energy Technol. 3, 825 (2015).

    CAS  Google Scholar 

  5. C. Lundgaard and O. Sigmund, Appl. Energy 236, 950 (2019).

    Google Scholar 

  6. K. Ahmad, C. Wan, and M.A. Al-Eshaikh, J. Electron. Mater. 46, 1348 (2017).

    CAS  Google Scholar 

  7. M. Culebras, M.M. de Lima Jr, C. Gómez, and A. Cantarero, J. Appl. Polym. Sci. 134, 43927 (2017).

    Google Scholar 

  8. X.Y. Wang, C.Y. Liu, L. Miao, J. Gao, and Y. Chen, J. Electron. Mater. 45, 1813 (2016).

    CAS  Google Scholar 

  9. H. Anno, M. Hokazono, F. Akagi, M. Hojo, and N. Toshima, J. Electron. Mater. 42, 1346 (2013).

    CAS  Google Scholar 

  10. B. Zheng, Y. Liu, B. Zhan, Y. Lin, J. Lan, and X. Yang, J. Electron. Mater. 43, 3695 (2014).

    CAS  Google Scholar 

  11. Y. Zhao, G.S. Tang, Z.Z. Yu, and J.S. Qi, Carbon 50, 3064 (2012).

    CAS  Google Scholar 

  12. S. Hata, K. Taguchi, K. Oshima, Y. Du, Y. Shiraishi, and N. Toshima, ChemistrySelect 4, 6800 (2019).

    CAS  Google Scholar 

  13. S. Maity, N. Sepay, C. Kulsi, A. Kool, S. Das, D. Banerjee, and K. Chatterjee, ChemistrySelect 3, 8992 (2018).

    CAS  Google Scholar 

  14. A.K. Kyaw, T.A. Yemata, X. Wang, S.L. Lim, W.S. Chin, K. Hippalgaonkar, and J. Xu, Macromol. Mater. Eng. 303, 1700429 (2018).

    Google Scholar 

  15. M. Bharti, P. Jha, A. Singh, A.K. Chauhan, S. Mishra, M. Yamazoe, A.K. Debnath, K. Marumoto, K.P. Muthe, and D.K. Aswal, Energy 176, 853 (2019).

    CAS  Google Scholar 

  16. C. Li, H. Ma, and Z. Tian, Appl. Therm. Eng. 111, 1441 (2017).

    CAS  Google Scholar 

  17. Y. Du, S.Z. Shen, W.D. Yang, K.F. Cai, and P.S. Casey, Synth. Met. 162, 375 (2012).

    CAS  Google Scholar 

  18. L. Wang, X. Jia, D. Wang, G. Zhu, and J. Li, Synth. Met. 181, 79 (2013).

    CAS  Google Scholar 

  19. Z. Golsanamlou, M.B. Tagani, and H.R. Soleimani, Theory Simul. 23, 311 (2014).

    CAS  Google Scholar 

  20. Q. Yao, L. Chen, W. Zhang, S. Liufu, and X. Chen, ACS Nano 4, 2445 (2014).

    Google Scholar 

  21. M.A. Soto-Oviedo, O.A. Araujo, R. Faez, M.C. Rezende, and M.A. De Paoli, Synth. Met. 156, 1249 (2006).

    CAS  Google Scholar 

  22. K. Deb, A. Debnath, A. Bera, K. Sarkar, A. Debnath, and B. Saha, Surf. Interfaces 16, 141 (2019).

    CAS  Google Scholar 

  23. J. Dominic, T. David, A. Vanaja, G. Muralidharan, N. Maheswari, and K.K. Satheesh Kumar, Appl. Surf. Sci. 460, 40 (2018).

    CAS  Google Scholar 

  24. K. Deb, A. Bera, and B. Saha, RSC Adv. 6, 94795 (2016).

    CAS  Google Scholar 

  25. Z. Guo, N. Liao, M. Zhang, and W. Xue, Appl. Surf. Sci. 453, 336 (2018).

    CAS  Google Scholar 

  26. K. Deb, A. Bera, K.L. Bhowmik, and B. Saha, Polym. Eng. Sci. 58, 2249 (2018).

    CAS  Google Scholar 

  27. H. Zheng, N.M. Ncube, K. Raju, N. Mphahlele, and M. Mathe, Springer Plus 5, 630 (2016).

    Google Scholar 

  28. E. Zanzola, C.R. Dennison, A. Battistel, P. Peljo, H. Vrubel, V. Amstutz, and H.H. Girault, Electrochim. Acta 235, 664 (2017).

    CAS  Google Scholar 

  29. M.S. Cho, S.Y. Park, J.Y. Hwang, and H.J. Choi, Mater. Sci. Eng. C 24, 15 (2004).

    Google Scholar 

  30. S.M. Reda and S.M. Al-Ghannam, Adv. Mater. Phys. Chem. 2, 75 (2012).

    CAS  Google Scholar 

  31. X.L. Wei, Y.Z. Wang, S.M. Long, C. Bobeczko, and A.J. Epstein, J. Am. Chem. Soc. 118, 2545 (1996).

    CAS  Google Scholar 

  32. Y.L. Ravich, B.A. Efimova, and V.I. Tamarchenko, Exp. Phys. Status Solidi B 43, 453 (1971).

    CAS  Google Scholar 

  33. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    CAS  Google Scholar 

  34. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yanmanaka, and G.J. Syndler, Science 321, 554 (2008).

    CAS  Google Scholar 

  35. T. Koga, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, J.L. Liu, and K.L. Wang, Appl. Phys. Lett. 77, 1490 (2000).

    CAS  Google Scholar 

  36. T. Koga, Ph.D. thesis (Harvard University, 2000).

  37. B. Paul and P. Banerji, Nanosci. Nanotechnol. Lett. 1, 208 (2009).

    CAS  Google Scholar 

  38. B. Paul, A. Kumar V, and P. Banerji, J. Appl. Phys. 108, 064322 (2010).

  39. P.K. Rawat, B. Paul, and P. Banerji, Nanotechnology 24, 215401 (2013).

    CAS  Google Scholar 

  40. P.K. Rawat, B. Paul, and P. Banerji, ACS Appl. Mater. Interfaces 6, 3995 (2014).

    CAS  Google Scholar 

  41. C. Bian, Y. Yu, and G. Xue, J. Appl. Polym. Sci. 104, 21 (2007).

    CAS  Google Scholar 

  42. F.P. Du, Q.Q. Li, P. Fu, Y.F. Zhang, and Y.G. Wu, J. Mater. Sci. Mater. Electron. 29, 8666 (2018).

    CAS  Google Scholar 

  43. C. Guo, F. Chu, P. Chen, J. Zhu, H. Wang, L. Wang, Y. Fan, and W. Jiang, J. Mater. Sci. 53, 6752 (2018).

    CAS  Google Scholar 

  44. H. Ju, D. Park, and J. Kim, Polymer 160, 24 (2019).

    CAS  Google Scholar 

  45. K. Sarkar, A. Debnath, K. Deb, A. Bera, and B. Saha, Energy 177, 203 (2019).

    CAS  Google Scholar 

  46. S.G. Pawar, S.L. Patil, M.A. Chougule, S.N. Achary, and V.B. Patil, Int. J. Polym. Mater. 60, 244 (2011).

    CAS  Google Scholar 

  47. S. Radhakrishnan, C.R. Siju, D. Mahanta, S. Patil, and G. Madras, Electrochim. Acta 54, 1249 (2009).

    CAS  Google Scholar 

  48. M.S. Lashkenari, S. Rezaei, J. Fallah, and H. Rostami, Synth. Met. 235, 71 (2018).

    Google Scholar 

  49. H. Xu, X. Chen, J. Zhang, J. Wang, B. Cao, and D. Cui, Sens. Actuators B 176, 166 (2013).

    CAS  Google Scholar 

  50. I. Gawri, R. Ridhi, K.P. Singh, and S.K. Tripathi, Mater. Res. Express 5, 025303 (2015).

    Google Scholar 

  51. M. Mitra, C. Kulsi, K. Kargupta, S. Ganguly, and D. Banerjee, J. Appl. Polym. Sci. 135, 46887 (2018).

    Google Scholar 

  52. S. Cui, J. Wang, and X. Wang, RSC Adv. 5, 58211 (2015).

    CAS  Google Scholar 

  53. K.L. Bhowmik, K. Deb, A. Bera, R.K. Nath, and B. Saha, J. Phys. Chem. C 120, 5855 (2016).

    CAS  Google Scholar 

  54. M. Campos, T.A.S. Miziara, F.H. Cristovan, and E.C. Pereira, J. Appl. Polym. Sci. 131, 40688 (2014).

    Google Scholar 

  55. N. Wang, J. Li, W. Lv, J. Feng, and W. Yan, RSC Adv. 5, 21132 (2015).

    CAS  Google Scholar 

  56. M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, and S. Goswami, RSC Adv. 5, 31039 (2015).

    CAS  Google Scholar 

  57. K. Gupta, P.C. Jana, and A.K. Meikap, J. Appl. Phys. 109, 123713 (2011).

    Google Scholar 

  58. M.D.A. Khan, A. Akhtar, and S.A. Nabi, New J. Chem. 39, 3728 (2015).

    CAS  Google Scholar 

  59. S. Sarmah and A. Kumar, Bull. Mater. Sci. 36, 31 (2013).

    CAS  Google Scholar 

  60. F.P. Du, N.N. Cao, Y.F. Zhang, P. Fu, Y.G. Wu, Z.D. Lin, R. Shi, A. Amini, and C. Cheng, Sci. Rep. 8, 6441 (2018).

    Google Scholar 

  61. S.A. Gregory, A.K. Menon, S. Ye, D.S. Seferos, J.R. Reynolds, and S.K. Yee, Adv. Energy Mater. 8, 1802419 (2018).

    Google Scholar 

  62. Z. Zhang, G. Chen, H. Wang, and W. Zhai, J. Mater. Chem. C 3, 1649 (2015).

    CAS  Google Scholar 

  63. K. Chatterjee, M. Mitra, K. Kargupta, S. Ganguly, and D. Banerjee, Nanotechnology 24, 215703 (2013).

    Google Scholar 

  64. M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yanga, and F. Qiu, Energy Environ. Sci. 5, 8351 (2012).

    CAS  Google Scholar 

  65. M. Bharti, A. Singh, S. Samanta, A.K. Debnath, K. Marumoto, D.K. Aswal, K.P. Muthe, and S.C. Gadkari, Vacuum 153, 238 (2018).

    CAS  Google Scholar 

  66. S. Xin, N. Yang, F. Gao, J. Zhao, L. Li, and C. Teng, Mater. Chem. Phys. 212, 440 (2018).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CRF of NIT Agartala for extending XRD measurement facility and DST-FIST program (SR/FST/PSI-196/2014) for UV–Vis–NIR measurement facility. The authors also acknowledge the financial assistance provided through the Minor (Seed) Research Grants scheme under TEQIP III of NIT Agartala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, A., Deb, K., Sarkar, K. et al. Improved Thermoelectric Performance in TiO2 Incorporated Polyaniline: A Polymer-Based Hybrid Material for Thermoelectric Generators. J. Electron. Mater. 49, 5028–5036 (2020). https://doi.org/10.1007/s11664-020-08241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08241-4

Keywords

Navigation