Skip to main content

Advertisement

Log in

Fast Growth of Continuous Single-Crystal Graphene Film on Copper by Low-Pressure Chemical Vapor Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, continuous and single-crystal graphene films on copper (Cu) are synthesized by low-pressure chemical vapor deposition in a growth time of 40 min. Meticulous modulation of the oxygen and carbon supply in multistage synthesis processing and dependence of graphene properties on the oxygen and carbon supply has been investigated. It is found that double-oxygen passivation together with the optimal methane (CH4):hydrogen (H2) ratio leads to a balance between nucleation and graphene growth rate to accomplish continuous single-crystal bilayer graphene films in a short time. Moreover, the graphene-based field effect transistor reveals the superior hole mobility of 5565 cm2 V−1 s−1. Our study provides a simple chemical vapor deposition procedure to achieve high quality graphene film on Cu in a short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 666, 306 (2004).

    Google Scholar 

  2. L. Maria, G. Maria Michela, C. Pio, and B. Giovanni, Phys. Chem. Chem. Phys. 20836, 13 (2011).

    Google Scholar 

  3. L. Dongmok, K. GiDuk, K. JungHo, M. Eric, L. YoungHee, B. Seunghyun, and P. Didier, Nanoscale 12943, 6 (2014).

    Google Scholar 

  4. Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, and B. Fallahazad, Science 720, 342 (2013).

    Google Scholar 

  5. P. Braeuningerweimer, B. Brennan, A.J. Pollard, and S. Hofmann, Chem. Mater. 8905, 28 (2016).

    Google Scholar 

  6. J. Nam, D.C. Kim, H. Yun, H.S. Dong, S. Nam, W.K. Lee, J.Y. Hwang, W.L. Sang, H. Weman, and K.S. Kim, Carbon 733, 111 (2017).

    Google Scholar 

  7. H. Zhou, W.J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang, and X. Duan, Nat. Commun. 2096, 4 (2013).

    Google Scholar 

  8. X. Zhang, W. Lu, J.H. Xin, B.I. Yakobson, and D. Feng, J. Am. Chem. Soc. 3040, 136 (2014).

    Google Scholar 

  9. C.Y. Khoo, H. Liu, W.A. Sasangka, R.I. Made, N. Tamura, M. Kunz, A.S. Budiman, C.L. Gan, and C.V. Thompson, J. Mater. Sci. 1864, 51 (2016).

    Google Scholar 

  10. A.S. Budiman, H.-A.-S. Shin, B.-J. Kim, S.-H. Hwang, H.-Y. Son, M.-S. Suh, Q.-H. Chung, K.-Y. Byun, N. Tamura, M. Kunz, and Y.-C. Joo, Microelectron. Reliab. 530, 52 (2012).

    Google Scholar 

  11. S.V. Petegem, S. Brandstetter, R. Maass, A.M. Hodge, B.S. El-Dasher, J. Biener, B. Schmitt, C. Borca, and H.V. Swygenhoven, Nano Lett. 9, 1158–1163 (2009).

    Article  Google Scholar 

  12. S.K. Tippabhotla, I. Radchenko, K.N. Rengarajan, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Synchrotron x-ray micro-diffraction–probing stress state in encapsulated thin silicon solar cells. Procedia Eng. 139, 123–133 (2016).

    Article  CAS  Google Scholar 

  13. I. Radchenko, S.K. Tippabhotla, N. Tamura, and A.S. Budiman, J. Electron. Mater. 6222, 12 (2016).

    Google Scholar 

  14. I. Radchenko, H.P. Anwarali, S.K. Tippabhotla, and A.S. Budiman, Acta Mater. 125, 156 (2018).

    Google Scholar 

  15. A.S. Budiman, W.D. Nix, N. Tamura, B.C. Valek, K. Gadre, J. Maiz, R. Spolenak, and J.R. Patel, Appl. Phys. Lett. 88, 233515 (2006).

    Article  Google Scholar 

  16. H. Mu, Z. Zhang, X. Zhao, L. Feng, K. Wang, and H. Xie, Appl. Phys. Lett. 349, 105 (2014).

    Google Scholar 

  17. A.C. Ferrari, J.C. Meyer, and V. Scardaci, Phys. Rev. Lett. 187401, 97 (2006).

    Google Scholar 

  18. M.A. Eshkalak and M.K. Anvarifard, Phys. Lett. A 1379, 381 (2017).

    Google Scholar 

  19. J. Dong, L. Shuai, Y. Fu, and W. Quan, Phys. Lett. A 292, 381 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichuan Mu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Zhang, J. & Mu, H. Fast Growth of Continuous Single-Crystal Graphene Film on Copper by Low-Pressure Chemical Vapor Deposition. J. Electron. Mater. 49, 5064–5069 (2020). https://doi.org/10.1007/s11664-020-08235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08235-2

Keywords

Navigation