Skip to main content
Log in

Performance Limits of III–V Barrier Detectors

  • Topical Collection: U.S. Workshop on Physics and Chemistry of II-VI Materials 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Minority-carrier lifetimes and diffusion lengths have been deduced from a comparison of band structure simulations and experimental measurements on mid-wave infrared InAsSb XBn and long-wave infrared InAs/GaSb type II superlattice (T2SL) XBp barrier detectors with low diffusion-limited dark current close to mercury cadmium telluride Rule 07 and high quantum efficiency. For the XBn devices, a lifetime of 1.9 μs was observed with a corresponding diffusion length of 14.5 μm. In contrast, the T2SL exhibited a much shorter lifetime of 7.5 ns, but the diffusion length of ∼ 7 μm was long enough to ensure that almost 90% of the photocarriers are collected. The lifetime appears to be Auger limited in the case of n-type InAsSb, but for the p-type T2SL, Shockley–Read–Hall (SRH) traps appear to dominate. In the second case, possible scenarios for the dominance of SRH recombination are discussed to identify pathways for further performance optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Klipstein, Depletionless Photodiode with Suppressed Dark Current, US Patent 7,795,640 (2003).

  2. P.C. Klipstein, Unipolar Semiconductor Photodetector with …, US Patent 8,004,012 (2006).

  3. P.C. Klipstein, Semiconductor Barrier Photodetector, US Patent 9,627,563 (22 April 2013).

  4. P.C. Klipstein, Proc. SPIE 6940, 6940-2U (2008).

    Google Scholar 

  5. G. Gershon, E. Avnon, M. Brumer, W. Freiman, Y. Karni, T. Niderman, O. Ofer, T. Rosenstock, D. Seref, N. Shiloah, L. Shkedy, R. Tessler, and I. Shtrichman, Proc. SPIE 10177, 10177-1I (2017).

    Google Scholar 

  6. P.C. Klipstein, E. Avnon, Y. Benny, Y. Cohen, R. Fraenkel, S. Gliksman, A. Glozman, E. Hojman, O. Klin, L. Krasovitsky, L. Langof, I. Lukomsky, I. Marderfeld, N. Yaron, M. Nitzani, N. Rappaport, I. Shtrichman, N. Snapi, and E. Weiss, J. Electron. Mater. 47, 5725 (2018).

    CAS  Google Scholar 

  7. P.C. Klipstein, Y. Benny, S. Gliksman, A. Glozman, E. Hojman, O. Klin, L. Langof, I. Lukomsky, I. Marderfeld, M. Nitzani, N. Snapi, and E. Weiss, IR Phys. Technol. 96, 155 (2019).

    CAS  Google Scholar 

  8. Y.Livneh, P.C. Klipstein, O. Klin, N. Snapi, S. Grossman, A. Glozman, and E. Weiss, Phys. Rev. B 86, 235311 (2012); Erratum, Phys. Rev. B 90, 039903 (2014).

  9. P.C. Klipstein, J. Electron. Mater. 43, 2984 (2014).

    CAS  Google Scholar 

  10. D.A. Fraser, The Physics of Semiconductor Devices, 4th ed. (Oxford: Clarendon, 1986).

    Google Scholar 

  11. M.A. Marciniak, R.L. Hengehold, and Y.K. Yeo, J. Appl. Phys. 84, 480 (1998).

    CAS  Google Scholar 

  12. Y.P. Varshni, Physica 34, 149 (1967).

    CAS  Google Scholar 

  13. W.E. Tennant, J. Electron. Mater. 39, 1030 (2010).

    CAS  Google Scholar 

  14. P.C. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, Proc. SPIE 7608, 7608-1V (2010).

    Google Scholar 

  15. P.C. Klipstein, III–V Semiconductors for Infrared Detectors, Molecular Beam Epitaxy: Materials and Device Applications, ed. H. Asahi and Y. Horikoshi (Hoboken: Wiley, 2019)

    Google Scholar 

  16. E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, J. Cryst. Growth 339, 31 (2012).

    CAS  Google Scholar 

  17. B.C. Connelly, G.D. Metcalf, H. Shen, and M. Wraback, Proc. SPIE 8704, 8704-0V (2013).

    Google Scholar 

  18. C.H. Grein, P.M. Young, and E. Ehrenreich, Appl. Phys. Lett. 61, 2905 (1992).

    CAS  Google Scholar 

  19. C.H. Grein, J. Garland, and M.E. Flatte, J. Electron. Mater. 38, 1800 (2009).

    CAS  Google Scholar 

  20. S. Bandara, P. Maloney, N. Baril, J. Pellegrino, and M. Tidrow, Opt. Eng. 50, 061015 (2011).

    Google Scholar 

  21. E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, O.O. Cellek, and Y.H. Zhang, Appl. Phys. Lett. 99, 251110 (2011).

    Google Scholar 

  22. M.A. Kinch, F. Aqariden, D. Chandra, P.-K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).

    CAS  Google Scholar 

  23. M.Y. Pines and O.M. Staffsud, Infrared Phys. 20, 73 (1980).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge technical support from Mr. S. Greenberg, who was responsible for the smooth operation of the MBE machine, and Ms. H Schanzer, Mr. Hanan Geva, Ms. H. Moshe, Mr. Y. Caracenti, Ms. N. Hazan, Mr. I. Bogoslavski, Mr. Y. Osmo, Ms. L Krivolapov, and Ms. M. Menahem who all contributed to the successful processing, packaging, or characterization of the materials and devices. We are grateful to Mr. Y. Livneh for computational assistance with the k·p simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Klipstein.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klipstein, P.C., Benny, Y., Cohen, Y. et al. Performance Limits of III–V Barrier Detectors. J. Electron. Mater. 49, 6893–6899 (2020). https://doi.org/10.1007/s11664-020-08195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08195-7

Keywords

Navigation