Skip to main content
Log in

Enhancing the High-Temperature Thermoelectric Performance of Li(CoNi)O2 by Replacement of Ni with Earth-Abundant Mg

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript


Oxides are mainly high-temperature thermoelectric materials due to their inherent thermal stability and also because of their low figure of merit at low temperatures, < 500 K. The compound Li1.1Co0.85Ni0.15O2, which was recently reported to exhibit a high figure of merit, has been modified by replacing divalent Ni with Mg, an earth-abundant element, to synthesize Li1.1Co0.85Ni0.15−xMgxO2 compounds with x = 0–0.15. All the compounds have the rhombohedral single phase belonging to the R\( \bar{3} \)mH space group. The lattice parameters are found to be larger compared with LiCoO2 due to the substitutions. The electrical conductivity of all the compounds increases with increasing temperature, which is a semiconducting behavior, and is found to increase by four orders of magnitude from 0.2 Ω−1 m−1 to 2000 Ω−1 m−1 in the range 300–1100 K. The Seebeck coefficient in this range is positive and is found to be nearly independent of temperature ∼ 300 μV K−1, indicating a saturation behavior. The thermal conductivity decreases with increasing temperature, reaching a value of ∼ 1.5 W m−1 K−1. The high Seebeck coefficient combined with enhanced electrical conductivity and low thermal conductivity results in an increase in the power factor to 0.2 mW m−1 K−2, with a simultaneous increase in the figure of merit zT to 0.16 at 1100 K. These results clearly show that partial replacement of Ni2+ with Mg2+ not only makes the oxide more environmentally friendly, but also increases zT. The enhanced properties are found to be due to oxidation of Co3+ to Co4+ and Ni2+ to Ni3+ due to the addition of Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renew. Sustain. Energy Rev. 32, 486 (2014).

    Article  CAS  Google Scholar 

  2. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl Energ 143, 1 (2015).

    Article  Google Scholar 

  3. S. Chen and Z. Ren, Mater. Today 16, 387 (2013).

    Article  CAS  Google Scholar 

  4. Y. Shi, C. Sturm, and H. Kleinke, J. Solid State Chem. 270, 273 (2019).

    Article  CAS  Google Scholar 

  5. M. Christensen, S. Johnsen, and B.B. Iversen, Dalton Trans 39, 978 (2010).

    Article  CAS  Google Scholar 

  6. Y. Yin, B. Tudu, and A. Tiwari, Vacuum 146, 356 (2017).

    Article  CAS  Google Scholar 

  7. T. Reimann and J. Töpfer, J. Alloys Compd. 699, 788 (2017).

    Article  CAS  Google Scholar 

  8. R. Kabir, T. Zhang, D. Wang, R. Donelson, R. Tian, T.T. Tan, and S. Li, J. Mater. Sci. 49, 7522 (2014).

    Article  CAS  Google Scholar 

  9. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Article  CAS  Google Scholar 

  10. T. Nagira, M. Ito, S. Katsuyama, K. Majima, and H. Nagai, J. Alloys Compd. 348, 263 (2003).

    Article  CAS  Google Scholar 

  11. C. Ruttanapun and S. Maensiri, J. Phys. D Appl. Phys. 48, 49 (2015).

    Article  Google Scholar 

  12. S. Shibasaki, W. Kobayashi, and I. Terasaki, Phys. Rev. B 74, 23 (2006).

    Article  Google Scholar 

  13. K. Tanwar, D.S. Gyan, S. Bhattacharya, S. Vitta, A. Dwivedi, and T. Maiti, Phys. Rev. B 99, 17 (2019).

    Article  Google Scholar 

  14. N.H. Turner, B.I. Dunlap, and R.J. Colton, Anal. Chem. 56, 373 (1984).

    Article  Google Scholar 

  15. B. Andriyevsky, K. Doll, and T. Jacob, Phys. Chem. Chem. Phys. 16, 23412 (2014).

    Article  CAS  Google Scholar 

  16. S. Laubach, S. Laubach, P.C. Schmidt, D. Ensling, S. Schmid, W. Jaegermann, A. Thissen, K. Nikolowski, and H. Ehrenberg, Phys. Chem. Chem. Phys. 11, 3278 (2009).

    Article  CAS  Google Scholar 

  17. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  CAS  Google Scholar 

  18. N.S. Krasutskaya, A.I. Klyndyuk, L.E. Evseeva, and S.A. Tanaeva, Inorg. Mater. 52, 393 (2016).

    Article  CAS  Google Scholar 

  19. M.M. Mallick and S. Vitta, Inorg. Chem. 56, 5827 (2017).

    Article  CAS  Google Scholar 

  20. M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, and D.R. Clarke, Chem. Mater. 25, 2911 (2013).

    Article  CAS  Google Scholar 

  21. Y. Shao-Horn, L. Croguennec, C. Delmas, E.C. Nelson, and M.A. O’Keefe, Nat. Mater. 2, 464 (2003).

    Article  Google Scholar 

  22. N. Yabuuchi, Y. Kawamoto, R. Hara, T. Ishigaki, A. Hoshikawa, M. Yonemura, T. Kamiyama, and S. Komaba, Inorg. Chem. 52, 9131 (2013).

    Article  CAS  Google Scholar 

  23. J. Zheng, G. Teng, C. Xin, Z. Zhuo, J. Liu, Q. Li, Z. Hu, M. Xu, S. Yan, W. Yang, and F. Pan, J. Phys. Chem. Lett. 8, 5537 (2017).

    Article  CAS  Google Scholar 

  24. P. Ghosh, S. Mahanty, M.W. Raja, R.N. Basu, and H.S. Maiti, J. Mater. Res. 22, 1162 (2007).

    Article  CAS  Google Scholar 

  25. H. Tukamoto and A.R. West, J. Electrochem. Soc. 144, 3164 (1997).

    Article  CAS  Google Scholar 

  26. A.J.E. Rettie, W.D. Chemelewski, D. Emin, and C.B. Mullins, J. Phys. Chem. Lett. 7, 471 (2016).

    Article  CAS  Google Scholar 

  27. P.M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).

    Article  CAS  Google Scholar 

  28. J.-P. Doumerc, J. Solid State Chem. 109, 419 (1994).

    Article  CAS  Google Scholar 

  29. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).

    Article  CAS  Google Scholar 

Download references


The authors wish to acknowledge DST-Nanomission, IITB-ISRO Space Technology Cell and BRNS for funding at different times in the past. The authors also acknowledge IIT Bombay for providing central research facilities.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Satish Vitta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutt, A., Mallick, M. & Vitta, S. Enhancing the High-Temperature Thermoelectric Performance of Li(CoNi)O2 by Replacement of Ni with Earth-Abundant Mg. J. Electron. Mater. 49, 4324–4332 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: