Skip to main content
Log in

A Comprehensive Study on X-Type Thermoelectric Generator Modules

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper focuses on studying the feasibility of an X-type thermoelectric module with different draft angles. A three-dimensional finite element model is established to analyze the thermoelectric and mechanical performance under steady-state conditions. Temperature, output power, conversion efficiency, and thermal stress are evaluated under four draft angles of 10°, 20°, 30°, and 40°. The numerical results indicate that the maximum output power of the X-type thermoelectric module is reached when θ = 10°, and it is about 4.57% higher than that of the traditional structure. The maximum von Mises stress occurs on four corners of the hot-side surfaces of the thermoelectric legs, and it decreases with an increase in the draft angle, while at the same time the von Mises stress on the middle surface is continuously increased. Additionally, shorter legs not only improve the output power, but can also enhance the mechanical performance. It can be concluded, therefore, that the design of the X-type structure with a certain draft angle can enhance the performance of the thermoelectric module with regard to both electrical power and mechanical reliability. The findings of this work may provide a basis for optimization of thermoelectric modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\( \vec{E} \) :

Electric field intensity vector (V/mm2)

\( \vec{J} \) :

Current density vector (A/mm2)

L :

Length (mm)

P :

Output power (W)

T :

Hot-side temperature (K)

W :

Width (mm)

R :

Resistance (Ω)

A :

Cross-sectional area (mm2)

U :

Output voltage (V)

\( \alpha \) :

Seebeck coefficient (μV/K)

\( \phi \) :

Electric potential (V)

\( \rho \) :

Electrical resistivity (Ω m)

\( \sigma \) :

Stress (GPa)

\( \lambda \) :

Thermal conductivity (W/m K)

\( \theta \) :

Draft angle (°)

\( \eta \) :

Conversion efficiency

co:

Copper

ce:

Ceramic plate

N:

n-Type thermoelements

P:

p-Type thermoelements

H:

Hot side

L:

Cold side

von:

von Mises

lo:

Load

References

  1. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press, 2006).

    Google Scholar 

  2. R.C. Wang, W. Yu, and X.P. Meng, Energy 1016, 162 (2018).

    Google Scholar 

  3. B. Orr, A. Akbarzadeh, M. Mochizuki, and R. Singh, Appl. Therm. Eng. 101, 490 (2016).

    Article  Google Scholar 

  4. D.L. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014).

    Article  CAS  Google Scholar 

  5. D. Luo, R.C. Wang, W. Yu, and W.Q. Zhou, Energy Convers. Manag. 209, 112645 (2020).

    Article  Google Scholar 

  6. D. Luo, R.C. Wang, W. Yu, Z.Y. Sun, and X.P. Meng, Appl. Therm. Eng. 837, 153 (2019).

    Google Scholar 

  7. Z.G. Shen, X. Liu, S. Chen, S.Y. Wu, L. Xiao, and Z.X. Chen, Energy 157, 297 (2018).

    Article  Google Scholar 

  8. H. Ali, A.Z. Sahin, and B.S. Yilbas, Energy Convers. Manag. 78, 634 (2014).

    Article  Google Scholar 

  9. H. Ali, B.S. Yilbas, and F.A. Al-Sulaiman, Energy 111, 439 (2016).

    Article  Google Scholar 

  10. S. Ferreira-Teixeira and A.M. Pereira, Energy Convers. Manag. 169, 217 (2018).

    Article  CAS  Google Scholar 

  11. A. Fabián-Mijangos, G. Min, and J. Alvarez-Quintana, Energy Convers. Manag. 148, 1372 (2017).

    Article  Google Scholar 

  12. L.H. Fan, G.B. Zhang, R.F. Wang, and K. Jiao, Energy Convers. Manag. 122, 85 (2016).

    Article  Google Scholar 

  13. D.R. Karana and R.R. Sahoo, Energy 179, 90 (2019).

    Article  CAS  Google Scholar 

  14. A.Z. Sahin and B.S. Yilbas, Energy Convers. Manag. 65, 26 (2013).

    Article  Google Scholar 

  15. T. Clin, S. Turenne, D. Vasilevskiy, and R.A. Masut, J. Electron. Mater. 38, 994 (2009).

    Article  CAS  Google Scholar 

  16. Y. Mu, G. Chen, R. Yu, G. Li, P. Zhai, and P. Li, Mater. Sci. Semicond. Process. 17, 21 (2014).

    Article  CAS  Google Scholar 

  17. L. Bakhtiaryfard and Y.S. Chen, Adv. Mech. Eng. 7, 1 (2015).

    Article  Google Scholar 

  18. S. Turenne, T. Clin, D. Vasilevskiy, and R.A. Masut, J. Electron. Mater. 39, 1926 (2010).

    Article  CAS  Google Scholar 

  19. S. Shittua, G.Q. Lia, X.D. Zhao, X.L. Ma, Y.G. Akhlaghia, and E. Ayodele, Energy Convers. Manag. 184, 180 (2019).

    Article  Google Scholar 

  20. B.S. Yilbas, S.S. Akhtar, and A.Z. Sahin, Energy 114, 52 (2016).

    Article  Google Scholar 

  21. S.F. Fan and Y.W. Gao, Energy 150, 38 (2018).

    Article  Google Scholar 

  22. Y.J. Wu, T.Z. Ming, X.H. Li, T. Pan, K.Y. Peng, and X.B. Luo, Energy Convers. Manag. 88, 915 (2014).

    Article  Google Scholar 

  23. T.R. Gong, Y.J. Wu, L. Gao, L. Zhang, J.T. Li, and T.Z. Ming, Energy 172, 1211 (2019).

    Article  Google Scholar 

  24. X.D. Jia and Y.W. Gao, Appl. Therm. Eng. 73, 335 (2014).

    Article  Google Scholar 

  25. A.S. Al-Merbati, B.S. Yilbas, and A.Z. Sahin, Appl. Therm. Eng. 50, 683 (2013).

    Article  Google Scholar 

  26. U. Erturun, K. Erermis, and K. Mossi, Appl. Therm. Eng. 73, 128 (2014).

    Article  Google Scholar 

  27. U. Erturun, K. Erermis, and K. Mossi, Appl. Energy 159, 19 (2015).

    Article  Google Scholar 

  28. O.I. Ibeagwu, Energy 180, 90 (2019).

    Article  Google Scholar 

  29. J.H. Meng, X.X. Zhang, and X.D. Wang, Int. J. Heat Mass Transf. 80, 227 (2015).

    Article  CAS  Google Scholar 

  30. D. Luo, R.C. Wang, and W. Yu, J. Power Sources 227, 439 (2019).

    Google Scholar 

  31. D. Luo, R.C. Wang, W. Yu, and W.Q. Zhou, Appl. Energy 238, 1299 (2019).

    Article  CAS  Google Scholar 

  32. D. Luo, R.C. Wang, W. Yu, and W.Q. Zhou, Renew. Energy 542, 154 (2020).

    Google Scholar 

  33. Y.C. Wang, C.S. Dai, and S.X. Wang, Appl. Energy 112, 1171 (2013).

    Article  CAS  Google Scholar 

  34. M.J. Liao, Z. He, C.P. Jiang, X.A. Fan, Y.W. Li, and F.S. Qi, Appl. Therm. Eng. 493, 133 (2018).

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (51977100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruochen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Meng, Z., Luo, D. et al. A Comprehensive Study on X-Type Thermoelectric Generator Modules. J. Electron. Mater. 49, 4343–4354 (2020). https://doi.org/10.1007/s11664-020-08152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08152-4

Keywords

Navigation