Skip to main content
Log in

Comparative Study of the Photoelastic Anisotropy of Si and GaAs

  • Topical Collection: 18th Conference on Defects (DRIP XVIII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper we present the results of experiments on single-crystalline (100)Si and (100)GaAs wafers which allow us to determine the degree of photoelastic anisotropy Ape in the near-infrared range (probing laser wavelength λ ≈ 1.3 μm). Ape is introduced as the absolute value of (π11 − π12 − π44)/(π11 − π12+ π44). π11, π12 and π44 are the piezo-optical coefficients. The experiments were carried out using a scanning infrared depolarization imager (SIRD) measurement system equipped with special calibration setups. These setups produce a defined diametrical loading of the wafer. The different measurement and analysis strategies are explicated. The generated birefringence and shear stress equivalent maps impressively illustrate the respective opposite photoelastic properties of Si and GaAs. The experimental results are compared with simulation data on the basis of a classic 2D stress model, taking into account the crystallographic anisotropy by applying the full tensor calculus. For GaAs, Ape is determined to be 0.41 ± 0.02. This value and the best-matching coefficients πij which were used for simulation are compared with data available from publications of the past few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D. Geiler, K. Schulz, and R. Knechtel, Microsyst. Technol. 19, 697 (2013).

    Article  Google Scholar 

  2. M. Herms, G. Irmer, G. Kupka, and M. Wagner, Phys. Status Solidi A 216, 1900254 (2019).

    Article  Google Scholar 

  3. E.M. Gamarts, P.A. Dobromyslov, V.A. Krylov, S.V. Prisenko, E.A. Jakushenko, and V.I. Safarov, J. Phys. III France 3, 1033 (1993).

    Article  CAS  Google Scholar 

  4. V.Y. Mendeleyev, S.N. Skovorodko, E.N. Lubnin, and V.M. Prosvirikov, Appl. Phys. Lett. 93, 131916 (2008).

    Article  Google Scholar 

  5. A.D. Rakić and M.L. Majewski, J. Appl. Phys. 80, 5909 (1996).

    Article  Google Scholar 

  6. M.M. Frocht, Photoelasticity, Vol. 2 (London: Wiley, 1941), p. 352.

    Google Scholar 

  7. J.W. Dally and W.F. Riley, Experimental Stress Analysis, 3rd ed. (New York: McGraw-Hill, 1991), p. 457.

    Google Scholar 

  8. H. Wolf, Spannungsoptik, Vol. 1 (Berlin: Springer, 1976), p. 78.

    Book  Google Scholar 

  9. P.K. Ajmera, B. Huner, A.K. Dutta, and C.S. Hartley, Appl. Opt. 27, 752 (1988).

    Article  CAS  Google Scholar 

  10. A.K. Dutta, P.K. Ajmera, and B. Huner, J. Appl. Phys. 65, 5230 (1989).

    Article  CAS  Google Scholar 

  11. G. Horn, J. Lesniak, T. Mackin, and B. Boyce, Rev. Sci. Instrum. 76, 045108 (2005).

    Article  Google Scholar 

  12. M.M. Frocht, Photoelasticity II (London: Wiley, 1941), p. 126.

    Google Scholar 

  13. S. Timoshenko and J.N. Goodier, Theory of Elasticity (New York: McGraw-Hill Book Company Inc., 1951), p. 107.

    Google Scholar 

  14. R.W. Dixon, J. Appl. Phys. 38, 5149 (1967).

    Article  CAS  Google Scholar 

  15. N. Suzuki and K. Tada, Jpn. J. Appl. Phys. 23, 1011 (1984).

    Article  CAS  Google Scholar 

  16. K.H. Brauer, J. Feuerstake, F. Fröhlich, and U. Mohr, Kristall und Technik 8, 253 (1973).

    Article  CAS  Google Scholar 

  17. C.W. Higginbotham, M. Cardona, and F.H. Pollak, Phys. Rev. 184, 821 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Herms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herms, M., Irmer, G., Kupka, G. et al. Comparative Study of the Photoelastic Anisotropy of Si and GaAs. J. Electron. Mater. 49, 5205–5212 (2020). https://doi.org/10.1007/s11664-020-08141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08141-7

Keywords

Navigation