Skip to main content
Log in

Effect of Wheel Speed on Magnetic Properties of Nd10Fe85−xCoxB5 (x = 0 to 40) Nanocomposite Ribbons

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nd2Fe14B/Fe(Co) nanocomposite ribbons were successfully fabricated by the melt-spinning technique. Nd10Fe85−xCoxB5 (x = 0, 10, 20, 30, and 40) prealloys were used as starting materials, and the wheel speed was varied from 10 m/s to 20 m/s. The effects of substitution of Fe by Co and the wheel speed were investigated to enable direct preparation of high-performance nanocomposite ribbons. It was found that the optimal wheel speed depended on the Co content in the ribbons. The highest energy product (BH)max of the as-spun ribbons reached 144.3 kJ/m3 when using the optimal speed of 16 m/s for Nd10Fe65Co20B5. By annealing the ribbons at 873 K and 973 K for 30 min, the magnetic properties of the Nd10Fe65Co20B5 nanocomposite ribbons obtained at a speed of 20 m/s were significantly improved. The microstructure and magnetic properties of the prepared ribbons are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Coehoorn, D.B. DeMooij, J.P.W.B. Duchateau, and K.H.J. Buschow, J. Phys. (Paris) 49, 669 (1988).

    Google Scholar 

  2. Z.Q. Jin, H. Okumura, Y. Zhang, H.L. Wang, J.S. Munoz, and G.C. Hadjipanayis, J. Magn. Magn. Mater. 248, 216 (2002).

    Article  CAS  Google Scholar 

  3. Z. Tian, S. Li, K. Peng, B. Gu, J. Zhang, M. Lu, and Y. Du, Mater. Sci. Eng. A 380, 143 (2004).

    Article  Google Scholar 

  4. Z. Pengyue, P. Minxiang, W. Jiao Zhiwei, G.H. Qiong, and F. Rui, J. Rare Earths 28, 944 (2010).

    Article  Google Scholar 

  5. C.B. Rong, D. Wang, V. Van Nguyen, M. Daniil, M.A. Willard, Y. Zhang, M.J. Kramer, and J.P. Liu, J. Phys. D: Appl. Phys. 46, 045001 (2013).

    Article  Google Scholar 

  6. W. Li, X. Li, L. Li, J. Zhang, and X. Zhang, J. Appl. Phys. 99, 126103 (2006).

    Article  Google Scholar 

  7. Z. Chen, Y. Zhang, G.C. Hadjipanayis, Q. Chen, and B. Ma, J. Magn. Magn. Mater. 206, 8 (1999).

    Article  CAS  Google Scholar 

  8. R.J.I. Betancourt and H.A. Davies, J. Appl. Phys. 85, 5911 (1999).

    Article  Google Scholar 

  9. L. Shandong, D. Yaodong, B.X. Gu, T. Zongjun, and D. Youwei, J. Alloys Compd. 339, 202 (2002).

    Article  Google Scholar 

  10. T.V. Khoa, D.S. Sun, N.D. Ha, S.M. Hong, H.M. Jin, Y.B. Kim, G.W. Kim, N.P. Duong, L.T. Tu, K.E. Lee, T.D. Hien, L.T. Tai, C.G. Kim, and C.O. Kim, J. Magn. Magn. Mater. 304, e249 (2006).

    Article  CAS  Google Scholar 

  11. Y. Liang, Q. Deng, X.H. Tan, H. Li, and H. Xu, Sci. Rep. 9, 1758 (2019).

    Article  CAS  Google Scholar 

  12. A.M. Khan, G.-B. Han, and S.-S. Kang, Rare Met. 39, 1 (2020).

    Article  Google Scholar 

  13. Z.W. Liu and H.A. Davies, J. Phys. D Appl. Phys. 39, 2647 (2006).

    Article  CAS  Google Scholar 

  14. D. Salazar, A. Martín-Cid, R. Madugundo, J.M. Barandiaran, and G.C. Hadjipanayis, Appl. Phys. Lett. 113, 152402 (2018).

    Article  Google Scholar 

  15. L. Lou, F.C. Hou, Y. Wang, Y. Cheng, H. Li, W. Li, D. Guo, X. Li, and X. Zhang, J. Magn. Magn. Mater. 352, 45 (2014).

    Article  CAS  Google Scholar 

  16. C.D. Fuerst and J.F. Herbst, J. Appl. Phys. 66, 1782 (1989).

    Article  CAS  Google Scholar 

  17. A. Bollero, O. Gutfleisch, K.-H. Müller, L. Schultz, and G. Drazic, J. Appl. Phys. 91, 8159 (2002).

    Article  CAS  Google Scholar 

  18. V. Neu and L. Schultz, J. Appl. Phys. 90, 1540 (2001).

    Article  CAS  Google Scholar 

  19. A. Melsheimer, M. Seeger, and H. Kronmuller, J. Magn. Magn. Mater. 202, 458 (1999).

    Article  CAS  Google Scholar 

  20. Z.W. Liu and H.A. Davies, J. Magn. Magn. Mater. 313, 337 (2007).

    Article  CAS  Google Scholar 

  21. Y. Bai, Z. Lei, S. Baogen, Z. Tongyun, and Yu Ronghai, J. Rare Earths 31, 49 (2013).

    Article  Google Scholar 

  22. C. You, X.K. Sun, W. Liu, B. Cui, X. Zhao, and Z. Zhang, J. Phys. D Appl. Phys. 33, 926 (2000).

    Article  CAS  Google Scholar 

  23. B.Z. Cui, X.K. Sun, W. Liu, Z.D. Zhang, D.Y. Geng, and X.G. Zhao, J. Phys. D Appl. Phys. 33, 338 (2000).

    Article  CAS  Google Scholar 

  24. J.J. Croat, J.F. Herbst, R.W. Lee, and F.E. Pinkerton, J. Appl. Phys. 55, 2078 (1984).

    Article  CAS  Google Scholar 

  25. T. Schrefl, J. Fidler, and H. Kronmüller, Phys. Rev. B 49, 6100 (1994).

    Article  CAS  Google Scholar 

  26. Z. Xue-Feng, Z. Wen-Kai, L. Yong-Feng, L. Yan-Li, L. Zhu-Bai, Ma Qiang, S. Meng-Fei, and L. Fei, Rare Met. 36, 992 (2017).

    Article  Google Scholar 

  27. E.K.-H. Müller, A. Handstein, J. Schneider, R. Grössinger, and R. Krewenka, IEEE Trans. Magn. 26, 1834 (1990).

    Article  Google Scholar 

  28. J. Schneider, D. Eckert, K.-H. Müller, A. Handstein, H. Mühlbach, H. Sassik, and H.R. Kirchmayr, Mater. Lett. 9, 201 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Khien.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, H.T., Vinh, N.D., Ca, N.X. et al. Effect of Wheel Speed on Magnetic Properties of Nd10Fe85−xCoxB5 (x = 0 to 40) Nanocomposite Ribbons. J. Electron. Mater. 49, 3902–3906 (2020). https://doi.org/10.1007/s11664-020-08112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08112-y

Keywords

Navigation