Skip to main content
Log in

Vertically Aligned Al-Doped ZnO Nanowire Arrays as Efficient Photoanode for Dye-Sensitized Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this communication, we report on the synthesis of vertically aligned aluminium (Al)-doped ZnO (ZnO:Al) nanowire (NW) thin films on FTO-coated glass substrates and their use as photoanode in dye-sensitized solar cells (DSSC). Very thin Al layers (∼3 nm, ∼6 nm and ∼10 nm) were deposited onto chemically synthesized ZnO nanowire film by electron-beam evaporation. The films were then subjected to rapid thermal annealing to incorporate different amounts of Al (∼0.98 at.%, 1.94 at.% and ∼2.89 at.%) into the ZnO nanowires. Optical, microstructural and compositional study of the films confirmed the growth of highly transparent and well-aligned ZnO:Al nanowires with a hexagonal crystal structure. The basic DSSC structure was fabricated using both undoped ZnO nanowire and ZnO:Al nanowire thin films as photoanode. In both cases, commercially available N3 dye was used as a photosensitizer, iodide/tri-iodide solution as electrolyte and FTO-coated glass as counter electrode. A significant increase in short-circuit current was observed, from 1.3 mA cm−2 for the pristine ZnO nanowire film-based DSSC to 4.4 mA cm−2 for the ZnO:Al (2.89 at.%) nanowire film-based DSSC. The overall power conversion efficiency (PCE) was also found to increase from 0.13% (for pristine ZnO nanowire thin film) to 0.49% for the ZnO:Al thin film-based DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhang, Y. Wang, H. Wu, M. Hou, J. Wang, L. Zhang, C. Liao, S. Liu, and Y. Wang, Nanoscale 11, 8319 (2019).

    Article  CAS  Google Scholar 

  2. R. Yu, C. Pana, and Z.L. Wang, Energy Environ. Sci. 6, 494 (2013).

    Article  CAS  Google Scholar 

  3. S. Fu, B. Zhang, H. Hu, Y. Zhang, and Y. Bi, Catal. Sci. Technol. 8, 2789 (2018).

    Article  CAS  Google Scholar 

  4. X. Wang, J. Song, and Z.L. Wang, J. Mater. Chem. 17, 711 (2007).

    Article  CAS  Google Scholar 

  5. S. Rackauskas, N. Barbero, C. Barolo, and G. Viscardi, in Nanowires-New Insights, ed. M. Khan (London: IntechOpen, 2017), pp. 60–78. https://doi.org/10.5772/67616.

    Chapter  Google Scholar 

  6. M. Giannouli, K. Govatsi, G. Syrrokostas, S.N. Yannopoulos, and G. Leftheriotis, Materials 11, 1 (2018).

    Article  Google Scholar 

  7. E. Tanaka, L. Nurdiwijayanto, M. Hagiwara, and S. Fujihara, J. Solid State Electrochem. 22, 1 (2018).

    Article  Google Scholar 

  8. B. Kilic, S. Turkdogan, A. Astam, S.S. Baran, M. Asgin, E. Gur, and Y. Kocak, J. Nanopart. Res. 20, 1 (2018).

    Article  CAS  Google Scholar 

  9. C. Karam, R. Habchl, S. Tingry, P. Miele, and M. Bechelany, ACS Appl. Nano. Mater. 1, 3750 (2018).

    Article  Google Scholar 

  10. I. Iwantono, R. Yuda, S.K.Md. Saad, M.Y. Abd-Rahaman, and A.A. Umar, Superlattices Microstruct. 123, 119 (2018).

    Article  CAS  Google Scholar 

  11. B. Kilic, L. Wang, O. Ozdemir, M. Lu, and S. Tüzemen, J. Nanosci. Nanotechnol. 13, 333 (2013).

    Article  CAS  Google Scholar 

  12. M.U. Rahman, M. Wei, F. Xie, and M. Khan, Catalysts 273, 1 (2019).

    Google Scholar 

  13. S. Zhuang, M. Lu, N. Zhou, L. Zhou, D. Lin, Z. Peng, and Q. Wu, Electrochim. Acta 294, 28 (2019).

    Article  CAS  Google Scholar 

  14. N.A. Karim, U. Mehmood, H.F. Zahid, and T. Asif, Sol. Energy 185, 165 (2019).

    Article  CAS  Google Scholar 

  15. T. Majumder, S. Dhar, P. Chakraborty, K. Debnath, and S.P. Mondal, NANO 14, 1 (2019).

    Article  Google Scholar 

  16. R.N. Gayen, S. Dalui, A. Rajaram, and A.K. Pal, Appl. Surf. Sci. 255, 4902 (2009).

    Article  CAS  Google Scholar 

  17. R.N. Gayen and S.R. Bhattacharyya, J. Phys. D Appl. Phys. 49, 1 (2016).

    Article  Google Scholar 

  18. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, and Z. Hong, Curr. Appl. Phys. 13, 697 (2013).

    Article  Google Scholar 

  19. G. Kaur, A. Mitra, and K.L. Yadav, Prog. Nat. Sci. Mater. Int. 25, 12 (2015).

    Article  CAS  Google Scholar 

  20. T. Hurma, J. Mol. Struct. 1189, 1 (2019).

    Article  CAS  Google Scholar 

  21. C. Wu, L. Shen, H. Yu, Q. Huang, and Y.C. Zhang, Mater. Res. Bull. 46, 1107 (2011).

    Article  CAS  Google Scholar 

  22. S.R. Bhattacharyya, R.N. Gayen, R. Paul, and A.K. Pal, Thin Solid Films 517, 5530 (2009).

    Article  CAS  Google Scholar 

  23. L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, and M.L. Brongersma, Nat. Mater. 8, 643 (2009).

    Article  CAS  Google Scholar 

  24. M.L. Brongersma, Y. Cui, and S. Fan, Nat. Mater. 13, 451 (2014).

    Article  CAS  Google Scholar 

  25. H.U. Ulriksen, T. Sondergaard, T.G. Pedersen, and K. Pedersen, Opt. Express 27, 14308 (2019).

    Article  CAS  Google Scholar 

  26. O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A.M. Bakkers, and A. Lagendijk, Nano Lett. 8, 2638 (2008).

    Article  CAS  Google Scholar 

  27. S. Fabbiyola and L.J. Kennedy, J. Nanosci. Nanotechnol. 19, 2963 (2019).

    Article  CAS  Google Scholar 

  28. K.H. Ko, Y.C. Lee, and Y.J. Jung, J. Colloid Interface Sci. 283, 482 (2005).

    Article  CAS  Google Scholar 

  29. M.H. Badr, A.A. El-Hamalawy, M.M. El-Kholy, and A. Ali, Int. J. Sci. Res. Rev. 6, 1 (2017).

    CAS  Google Scholar 

  30. M.R. Parra, P. Pandey, H. Siddiqui, V. Sudhakar, K. Krishnamoorthy, and F.Z. Haque, Appl. Surf. Sci. 470, 1130 (2019).

    Article  Google Scholar 

  31. R. Tao, T. Tomita, R.A. Wong, and K. Waki, J. Power Sources 214, 159 (2012).

    Article  CAS  Google Scholar 

  32. M. Ekmekci, C. Ela, and S. Erten-Ela, Appl. Ceram. Technol. 16, 727 (2019).

    Article  CAS  Google Scholar 

  33. M.D. Tyona, R.U. Osuji, F.I. Ezema, S.B. Jambure, and C.D. Lokhande, Adv. Appl. Sci. Res. 7, 18 (2016).

    CAS  Google Scholar 

  34. W. Qin, S. Lu, X. Wu, and S. Wang, Int. J. Electrochem. Sci. 8, 7984 (2013).

    CAS  Google Scholar 

  35. S. Ni, F. Guo, D. Wang, S. Jiao, J. Wang, Y. Zhang, B. Wang, P. Feng, and L. Zhao, Crystals 9, 1 (2019).

    Google Scholar 

  36. R.N. Gayen and T. Chakrabarti, Mater. Sci. Semicond. Process. 100, 1 (2019).

    Article  CAS  Google Scholar 

  37. M.D. Tyona, S.B. Jambure, C.D. Lokhande, A.G. Banpurkar, R.U. Osuji, and F.I. Ezema, Mater. Lett. 220, 281 (2018).

    Article  CAS  Google Scholar 

  38. J. Wang, Y. Ding, X. Chen, Z.Z. Zhang, and X. Shang, J. Chin. Ceram. Soc. 41, 1588 (2013).

    CAS  Google Scholar 

  39. P. Dhamodharan, C. Manoharan, M. Bououdina, R. Venkadachalapathy, and S. Ramalingam, Sol. Energy 141, 127 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RNG wishes to thank DHESTB, Govt. of West Bengal (File No. ST/P/S&T/4G-3/2017), Presidency University (FRPDF grant) and DST-FIST (SR/FST/UNCORRECTED PSI-188/2013) for financial support to carry out this work. SRB wishes to thank the UGC for granting an MRP (No. F.PSW.-051/15-16) under which a part of this work was carried out. The authors also acknowledge the help of Tanwistha Chakrabarti in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Gayen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S.R., Mallick, Z. & Gayen, R.N. Vertically Aligned Al-Doped ZnO Nanowire Arrays as Efficient Photoanode for Dye-Sensitized Solar Cells. J. Electron. Mater. 49, 3860–3868 (2020). https://doi.org/10.1007/s11664-020-08107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08107-9

Keywords

Navigation