Effects of Ni Substitution on the Electronic Structure and Magnetic Properties of Perovskite SrFeO3

Abstract

Effects of nickel substitution on the physical properties of perovskite SrFe1−xNixO3 (x = 0, 0.25, 0.50, 0.75 and 1) are investigated by density functional theory (DFT) using local density approximation (LDA), generalized gradient approximation (GGA) and GGA supplemented with a localization correction (GGA + U). It is found that the GGA + U results are the much consistent with experiments. The lattice constants decreases with the increase of Ni substitution and are found to be stable for all concentrations. The electron charge densities reveal that the bond between Sr-O is ionic; the Fe/Ni-O bond is covalent and the Ni-Fe bond is metallic. Electronic band structure comparisons and electrical properties reveal the metallic nature of samples. DFT as well as post-DFT calculations confirm that the magnetic interactions are anti-ferromagnetic for SrFeO3, while they are ferromagnetic for all Ni concentrations. The mechanism is elucidated by exchange interactions with magnetic transitions above room temperature. Due to the metallic nature and good electrical conductivity of these materials, it is expected that they could be used as electrode materials in fuel cells.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N.P. Bansal, P. Singh, D. Singh, and J. Salem, Advances in Solid Oxide Fuel Cells, Vol. 30 (New York: Wiley, 2009). ISBN 978-0-470-34496-5.

    Book  Google Scholar 

  2. 2.

    B.C.H. Steele and A. Heinzel, Nature 414, 345 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    A. Orera and P.R. Slater, Chem. Mater. 22, 675 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    A.J. Jacobson, Chem. Mater. 22, 660 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    J.C.R. Morales, J.C. Vázquez, J.P. Martínez, D.M. López, and P. Núñe, Electrochim. Acta 52, 278 (2006).

    Article  CAS  Google Scholar 

  6. 6.

    J.C.R. Morales, J.C. Vazquez, D.M. López, D.P. Coll, J.P. Martínez, and P. Núñez, J. Power Sources 177, 154 (2008).

    Article  CAS  Google Scholar 

  7. 7.

    J.C.R. Morales, D.M. López, J.C. Vázquez, and J.T.S. Irvine, RSC Adv. 1, 1403 (2011).

    Article  CAS  Google Scholar 

  8. 8.

    J. Yoo, A. Verma, S. Wang, and A.J. Jacobson, J. Electrochem. Soc. 152, 497 (2005).

    Article  CAS  Google Scholar 

  9. 9.

    V. Zaspalis, A. Evdou, and L. Nalbandian, Fuel 89, 1265 (2010).

    Article  CAS  Google Scholar 

  10. 10.

    Y. Niu, W. Zhou, J. Sunarso, L. Ge, Z. Zhu, and Z. Shao, J. Mater. Chem. 20, 9619 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    J.J. Lander, Acta Crystallogr. 4, 148 (1951).

    CAS  Article  Google Scholar 

  12. 12.

    N. Hayashi, T. Yamamoto, H. Kageyama, M. Nishi, Y. Watanabe, T. Kawakami, Y. Matsushita, A. Fujimori, and M. Takano, Angew. Chem. Int. Ed. 50, 12547 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    M.J. Akhtar and R.T.A. Khan, Mater. Charact. 62, 1016 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    H. Rached, D. Rached, M. Rabah, R. Khenata, and A.H. Reshak, Physica B 405, 3515 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Y. Takeda, T. Hashino, H. Miyamoto, F. Kanamaru, S. Kume, and M. Koizumi, J. Inorg. Nucl. Chem. 34, 1599 (1972).

    CAS  Article  Google Scholar 

  16. 16.

    H. Krischner, K. Torkar, and B.O. Kolbsen, J. Solid State Chem. 3, 349 (1971).

    CAS  Article  Google Scholar 

  17. 17.

    M. Zinkevich, J. Solid State Chem. 178, 2818 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    G.Y. Chen, C.M. Dai, and C.L. Ma, in International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014).

  19. 19.

    H. Seki, Y. Hosaka, T. Saito, M. Mizumaki, and Y. Shimakawa, Angew. Chem. Int. Ed. 55, 360 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    H. Seki, Y. Hosaka, T. Saito, and Y. Shimakawa, J. Jpn. Soc. Powder Metall. 63, 609 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    P. Carra, B.T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).

    CAS  Article  Google Scholar 

  22. 22.

    W.P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  23. 23.

    P. Blaha, K. Schwarz, and J. Luitz, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Technical University Wien, 2001). ISBN 3-9501031-0-4.

    Google Scholar 

  24. 24.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, F. Tran, and L.D. Marks, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2018). ISBN 3-9501031-1-1-2.

  25. 25.

    J.P. Perdew and A. Zuanger, Phys. Rev. B 23, 5048 (1981).

    CAS  Article  Google Scholar 

  26. 26.

    P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990).

    CAS  Article  Google Scholar 

  27. 27.

    V.I. Anisimov, I.V. Solovyev, and M.A. Korotin, Phys. Rev. B 48, 16929 (1993).

    CAS  Article  Google Scholar 

  28. 28.

    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    S. Mehmood, Z. Ali, I. Khan, and I. Ahmad, Mater. Chem. Phys. 196, 222 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    F. Birch, Phys. Rev. 71, 809 (1947).

    CAS  Article  Google Scholar 

  31. 31.

    L. Mogni, F. Prado, H. Ascolani, M. Abbate, M.S. Moreno, A. Manthiram, A. Caneiro, and J. Solid, State Chem. 178, 1559 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    M. Shiga, J. Phys. Soc. Jpn. 50, 2573 (1981).

    CAS  Article  Google Scholar 

  33. 33.

    S. Kawasaki, M. Takano, and Y. Takeda, J. Solid State Chem. 121, 174 (1996).

    CAS  Article  Google Scholar 

  34. 34.

    A. Munoza, J.A. Alonsob, M.J.M. Lopeb, C.D.L. Calleb, and M.T.F. Diaz, J. Solid State Chem. 179, 3365 (2006).

    Article  CAS  Google Scholar 

  35. 35.

    T. Takeda, T. Watanabe, S. Komura, and H. Fujii, J. Phys. Soc. Jpn. 56, 731 (1987).

    CAS  Article  Google Scholar 

  36. 36.

    S.F. Matar, P. Blohn, and G. Demazeau, J. Magn. Magn. Mater. 140, 169 (1995).

    Article  Google Scholar 

  37. 37.

    P. Adler, A. Lebon, V. Damljanovi, C. Ulrich, C. Bernhard, A.V. Boris, A. Maljuk, C.T. Lin, and B. Keimer, Phys. Rev. B 73, 094451 (2006).

    Article  CAS  Google Scholar 

  38. 38.

    A.J. Fernández-Ropero, J.M. Porras-Vázquez, A. Cabeza, P.R. Slater, D. Marrero-López, and E.R. Losilla, J. Power Sources 249, 405 (2014).

    Article  CAS  Google Scholar 

  39. 39.

    S. Erat, A. Braun, C. Piamonteze, Z. Liu, A. Ovalle, H. Schindler, T. Graule, and L.J. Gauckler, J. Appl. Phys. 108, 124906 (2010).

    Article  CAS  Google Scholar 

  40. 40.

    N. Trofimenko and H. Ullmann, Solid State Ionics 118, 215 (1999).

    CAS  Article  Google Scholar 

  41. 41.

    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  42. 42.

    Z. Ali, I. Ahmad, B. Amin, M. Maqbool, G. Murtaza, I. Khan, M.J. Akhtar, and F. Ghaffor, Physica B 406, 3800 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    I. Ullah, S. Mehmood, Z. Ali, G. Rahman, I. Khan, I. Ahmad, and I.J. Modran, Physics B 32, 1850201 (2018).

    Google Scholar 

  44. 44.

    Z. Ali, A. Sattar, S.J. Asadabadi, and I. Ahmad, J. Phys. Chem. Solids 86, 114 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    A. Boochani, B. Nowrozi, J. Khodadadi, S. Solaymani, and S.J. Asadabadi, J. Phys. Chem. C 121, 3978 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    A. Maignan, C. Martin, N. Nguyen, and B. Raveau, Solid State Sci. 3, 57 (2001).

    CAS  Article  Google Scholar 

  47. 47.

    J. Fujioka, S. Ishiwata, Y. Kaneko, Y. Taguchi, and Y. Tokura, Phys. Rev. B 85, 155141 (2012).

    Article  CAS  Google Scholar 

  48. 48.

    P. Adler, J. Solid State Chem. 30, 129 (1997).

    Article  Google Scholar 

  49. 49.

    Y.W. Long, Y. Kaneko, S. Ishiwata, Y. Tokunaga, T. Matsuda, H. Wadati, Y. Tanaka, S. Shin, Y. Tokura, and Y. Taguchi, Phys. Rev. B 86, 064436 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    T. Takeda, Y. Yamaguochi, and H. Watnabe, J. Phys. Soc. Jpn. 33, 967 (1972).

    CAS  Article  Google Scholar 

  51. 51.

    P.W. Anderson, Phys. Rev. 79, 350 (1950).

    Article  Google Scholar 

  52. 52.

    I.R. Shein, K.I. Shein, V.L. Kozhevnikov, and A.L. Ivanovski, Phys. Solid State 47, 2082 (2005).

    CAS  Article  Google Scholar 

  53. 53.

    Z. Li, T. Iitaka, and T. Tohyama, Phys. Rev. B 86, 094422 (2012).

    Article  CAS  Google Scholar 

  54. 54.

    S.M. Jaya, R. Jagadish, R.S. Rao, and R. Asokami, Phys. Rev. B 43, 13274 (1991).

    CAS  Article  Google Scholar 

  55. 55.

    S.M. Griffin and N.A. Spaldin, J. Phys. Condens. Mater. 29, 215604 (2017).

    Article  Google Scholar 

  56. 56.

    N. Hamda, H. Rozale, A. Chahed, and O. Benhelal, Superlattices Microstruct. 63, 182 (2013).

    Article  CAS  Google Scholar 

  57. 57.

    M.M. Saad, J. Sci. Adv. Mater. Dev. 2, 115 (2017).

    Google Scholar 

  58. 58.

    F. Liu, S.N. Khanna, and P. Jena, J. Appl. Phys. 67, 4484 (1990).

    CAS  Article  Google Scholar 

  59. 59.

    C. Kittel, Introduction to Solid State Physics, 7th ed. (New York: Wiley, 1996).

    Google Scholar 

  60. 60.

    J. Okamoto, K. Mamiya, S.I. Fujimori, T. Okane, Y. Muramatsu, K. Yoshii, A. Fujimori, A. Tanaka, M. Abbate, T. Koide, S. Ishiwata, S. Kawasaki, and M. Takano, Phys. Rev. B 71, 104401 (2005).

    Article  CAS  Google Scholar 

  61. 61.

    T. Takeda and H. Watanabe, J. Phys. Soc. Jpn. 33, 973 (1972).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Higher Education Commission of Pakistan (HEC), Project No. 10216/KPK/NRPU/R&D/HEC/2017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zahid Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehmood, S., Ali, Z., Khan, I. et al. Effects of Ni Substitution on the Electronic Structure and Magnetic Properties of Perovskite SrFeO3. Journal of Elec Materi 49, 3780–3790 (2020). https://doi.org/10.1007/s11664-020-08092-z

Download citation

Keywords

  • Ceramics
  • electronic properties
  • electrode materials
  • fuel cells
  • oxide materials