Skip to main content

Influence of Electron Transport Layer (TiO2) Thickness and Its Doping Density on the Performance of CH3NH3PbI3-Based Planar Perovskite Solar Cells

Abstract

Simulation studies are vital to understanding solar cell performance and in optimal device design for high-efficiency solar cells. Cell performance is sensitive to many factors, including device architecture, energy band alignment at the interfaces, materials used for photogeneration, charge extraction, doping density and thickness of various layers. The role of electron transport layer (ETL) thickness and its doping density on device performance is explored in this work. As the ETL thickness is increased from 10 nm to 200 nm, both fill factor (FF) and efficiency remain high up to 40 nm, at 0.85 and 28.04%, respectively, and beyond 40 nm, they decrease gradually due to a sharp increase in series resistance, reaching zero at 200 nm. However, Jsc and Voc remained unchanged up to an ETL thickness of about 150 nm and 160 nm, respectively. These results were confirmed by contour plots of the simulated Voc, Jsc, FF and efficiency results. We observed that when ETL approached 200 nm, Jsc and Voc decreased to zero and 0.88 V, respectively. This can be attributed to very high series resistance and recombination in the cell. Donor concentration variation in the ETL from 1017/cm3 to 1020/cm3 has much less impact on Jsc, and Voc remains unchanged. However, fill factor and efficiency improved, which might be due to an increase in conductivity in the ETL. Our result shows that for an optimized device, with an AM 1.5 spectrum, a cell efficiency of 29.64% was achieved with Voc, Jsc and fill factor of 1.241 V, 28.70 mA/cm2 and 0.83, respectively.

References

  1. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science 347, 967 (2015).

    CAS  Article  Google Scholar 

  2. A. Kooijman, L.A. Muscarella, and R.M. Williams, Appl. Sci. 9, 1678 (2019).

    CAS  Article  Google Scholar 

  3. S. Ruhle, Sol. Energy 130, 139 (2016).

    Article  Google Scholar 

  4. M. Ye, C. He, J. Iocozzia, X. Liu, X. Cui, X. Meng, M. Rager, X. Hong, X. Liu, and Z. Lin, J. Phys. D Appl. Phys. 50, 373002 (2017).

    Article  Google Scholar 

  5. Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, and Q. Zhao, Nat. Commun. (2016). https://doi.org/10.1038/ncomms10228.

    Article  Google Scholar 

  6. R.A. Belisle, W.H. Nguyen, A.R. Bowring, P. Calado, X. Li, S.J.C. Irvine, M.D. McGehee, P.R.F. Barnes, and B.C. O’Regan, Energy Environ. Sci. 10, 192 (2017).

    CAS  Article  Google Scholar 

  7. J. Krysa, H. Krysova, Z. Hubicka, S. Kment, J. Maixner, and L. Kavan, Photochem. Photobiol. Sci. 18, 891 (2019).

    CAS  Article  Google Scholar 

  8. H. Hu, B. Dong, H. Hu, F. Chen, M. Kong, Q. Zhang, T. Luo, L. Zhao, Z. Guo, J. Li, Z. Xu, S. Wang, D. Eder, and L. Wan, ACS Appl. Mater. Interfaces 8, 17999 (2016).

    CAS  Article  Google Scholar 

  9. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Science 338, 643 (2014).

    Article  Google Scholar 

  10. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Gratzel, Nature 499, 316 (2013).

    CAS  Article  Google Scholar 

  11. M. Seetharaman, P. Nagarjuna, P. Naresh Kumar, S.P. Singh, M. Deepa, and M.A.G. Namboothiry, Phys. Chem. Chem. Phys. 16, 24691 (2014).

    Article  Google Scholar 

  12. H. Zhu, A.K. Kalkan, J. Hou, and S.J. Fonash, AIP Conf. Proc. 462, 309 (1999).

    CAS  Article  Google Scholar 

  13. Y. Liu, Y. Sun, and A. Rockett, Sol. Energy Mater. Sol. Cells 98, 124 (2012).

    CAS  Article  Google Scholar 

  14. K.L. Kearney and A.A. Rockett, J. Electrochem. Soc. 163, H598 (2016).

    CAS  Article  Google Scholar 

  15. S.J. Fonash, J. Arch, J. Cuiffi, J. Hou, W. Howland, P.J. McElheny, A. Moquin, M. Rogosky, T. Tran, H. Zhu, and F. Rubinelli, A Manual for AMPS-1D for Windows 95/NT (Happy Valley: The Pennsylvania State University, 1997).

    Google Scholar 

  16. G.A.M. Hurkx, D.B.M. Klaassen, and M.P.G. Knuvers, IEEE Trans. Electron Devices 39, 331 (1992).

    Article  Google Scholar 

  17. K. Yang, Solid-State Electron. 36, 321 (1993).

    CAS  Article  Google Scholar 

  18. S. Yasar, S. Kahraman, S. Cetinkaya, S. Apaydın, I. Bilican, and I. Uluer, Optik 127, 8827 (2016).

    CAS  Article  Google Scholar 

  19. R. Jeyakumar, A. Bag, and R. Reza Nekovei, Solar Energy 190, 104 (2019).

    CAS  Article  Google Scholar 

  20. W.J. Yin, T.T. Shi, and Y.F. Yan, Adv. Mater. 26, 4653 (2014).

    CAS  Article  Google Scholar 

  21. G. Xosrovashvilia and N.E. Gorjib, J. Mod. Opt. 60, 936 (2013).

    Article  Google Scholar 

  22. Q. Zhou, D. Jiao, K. Fu, X. Wu, Y. Chen, J. Lu, and S. Yang, Sol. Energy 123, 51 (2016).

    CAS  Article  Google Scholar 

  23. T. Minemoto and M. Murata, J. Appl. Phys. 116, 054505 (2014).

    Article  Google Scholar 

  24. A. Poglitsch and D. Weber, J. Chem. Phys. 87, 6373 (1987).

    CAS  Article  Google Scholar 

  25. D. Poplavskyy and J. Nelson, J. Appl. Phys. 93, 341 (2003).

    CAS  Article  Google Scholar 

  26. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R.H. Baker, J.H. Yum, J.E. Moser, M. Grätzel, and N.G. Park, Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  27. T. Leijtens, I. Ding, T. Giovenzana, J.T. Bloking, M.D. McGehee, and A. Sellinger, ACS Nano 6, 1455 (2012).

    CAS  Article  Google Scholar 

  28. H.J. Du, W.C. Wang, and J.Z. Zhu, Chin. Phys. B 25, 108802 (2016).

    Article  Google Scholar 

  29. L. Huang, X. Sun, C. Li, R. Xu, J. Xu, Y. Du, Y. Wu, J. Ni, H. Cai, J. Li, Z. Hu, and J. Zhang, Sol. Energy Mater. Sol. Cells 157, 1038 (2016).

    CAS  Article  Google Scholar 

  30. T. Minemoto and M. Murata, Sol. Energy Mater. Sol. Cells 133, 8 (2015).

    CAS  Article  Google Scholar 

  31. W.A. Laban and L. Etgar, Energy Environ. Sci. 6, 3249 (2013).

    CAS  Article  Google Scholar 

  32. M.I. Hossain, F.H. Alharbi, and N. Tabet, Sol. Energy 120, 370 (2015).

    CAS  Article  Google Scholar 

  33. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).

    CAS  Article  Google Scholar 

  34. L.S. Mende and M. Gratzel, Thin Solid Films 500, 296 (2006).

    Article  Google Scholar 

  35. A. Bag, R. Radhakrishnan, R. Nekovei, and R. Jeyakumar, Solar Energy 196, 177 (2020).

    CAS  Article  Google Scholar 

  36. J. Cui, T. Allen, Y. Wan, J. McKeon, C. Samundsett, D. Yan, X. Zhang, Y. Cui, Y. Chen, P. Verlinden, and A. Cuevasa, Sol. Energy Mater. Sol. Cells 158, 115 (2016).

    CAS  Article  Google Scholar 

  37. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipic, S. Moon, J. Yum, M. Topic, S. De Wolf, and C. Ballif, J. Phys. Chem. Lett. 6, 66 (2015).

    Article  Google Scholar 

  38. M. Filipic, P. Löper, B. Niesen, S. De Wolf, J. Krc, C. Ballif, and M. Topic, Opt. Express 23, A263 (2015).

    CAS  Article  Google Scholar 

  39. A.N. Cho and N.G. Park, ChemSusChem 10, 3687 (2017).

    CAS  Article  Google Scholar 

  40. S.S. Reddy, K. Gunasekar, J.H. Heo, S.H. Im, C.S. Kim, D.H. Kim, J.H. Moon, J.Y. Lee, M. Song, and S.H. Jin, Adv. Mater. 28, 686 (2016).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jeyakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeyakumar, R., Bag, A., Nekovei, R. et al. Influence of Electron Transport Layer (TiO2) Thickness and Its Doping Density on the Performance of CH3NH3PbI3-Based Planar Perovskite Solar Cells. J. Electron. Mater. 49, 3533–3539 (2020). https://doi.org/10.1007/s11664-020-08041-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08041-w

Keywords

  • CH3NH3PbI3
  • ETL thickness
  • contour map
  • ETL doping density
  • light IV