Skip to main content
Log in

Pressure-Induced Thermodynamic and Opto-Electronic Behavior of BeTiO3 Perovskite: A DFT Investigation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Density functional theory calculations as employed in Wien2K code are used to investigate the structural, thermodynamic, and optoelectronic behavior of BeTiO3 perovskite at various pressures. The tolerance factor within the range of 0.93–1.04 suggests that the studied perovskite is thermodynamically stable in the cubic phase along with structural and mechanical properties. By inducing the pressure, the dependent specific heat capacity and the electron density are explored from 0 to 1000 K. At 132 GPA, the band gap becomes direct in nature (indirect band gap at 0 GPA), where the optical transitions take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard Geffroy, Philippe le Roy, and Christophe Prat, Polym. Int. 55, 572 (2006).

    CAS  Google Scholar 

  2. Robert Langer and David A. Tirrell, Nature 42, 487 (2004).

    Google Scholar 

  3. S.M. Bhosale, M.P. Suryawanshi, M.A. Gaikwad, P.N. Bhosale, J.H. Kim, and A.V. Moholkar, Mater. Lett. 129, 153 (2014).

    CAS  Google Scholar 

  4. S. Benramache, F. Chabane, B. Benhaoua, and F.Z. Lemmadi, J. Semicond. 34, 023001 (2013).

    Google Scholar 

  5. H. Przybylińska, G. Springholz, R.T. Lechner, M. Hassan, M. Wegscheider, W. Jantsch, and G. Bauer, Phys. Rev. Lett. 112, 047202 (2014).

    Google Scholar 

  6. M. Hassan, G. Springholz, R.T. Lechner, H. Groiss, R. Kirchschlager, and G. Bauer, J. Cryst Growth 323, 363 (2011).

    CAS  Google Scholar 

  7. G. Kaur, Series in Bio Engineering (Cham: Springer, 2017).

    Google Scholar 

  8. M. Bernardi, C. Ataca, M. Palummo, and J.C. Grossman, Nanophotonics 6, 479 (2017).

    Google Scholar 

  9. H.I.T. Hauge, M.A. Verheijen, S. Conesa-Boj, T. Etzelstorfer, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino, and S. Kolling, Nano Lett. 15, 5855 (2015).

    CAS  Google Scholar 

  10. M.D. Bhatt and C. O’Dwyer, Phys. Chem. Phys. 17, 4799 (2015).

    CAS  Google Scholar 

  11. X. Zhou, J. Jankowska, H. Dong, and O.V. Prezhdo, J. Energy Chem. 8, 742 (2017).

    Google Scholar 

  12. J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, and J. Li, ACS Catal. 4, 2917 (2014).

    CAS  Google Scholar 

  13. M. Kubicek, A.H. Bork, and L.M. Rupp, J. Mater. Chem. A 5, 11983 (2017).

    CAS  Google Scholar 

  14. Z. Guguchia, T. Adachi, Z. Shermadini, T. Ohgi, J. Chang, E.S. Bozin, F. von Rohr, A.M. dos Santos, J.J. Molaison, R. Boehler, Y. Koike, A.R. Wieteska, B.A. Frandsen, E. Morenzoni, A. Amato, S.J.L. Billinge, Y.J. Uemura, and R. Khasanov, Phys. Rev. B 96, 094515 (2017).

    Google Scholar 

  15. Y. Bai, Z. Yu, R. Liu, N. Li, S. Yan, K. Yang, B. Liu, D. Wei, and L. Wang, Sci. Rep. 7, 5321 (2017).

    Google Scholar 

  16. M. Misek, J. Prokleska, P. Opletal, P. Proschek, J. Kastil, J. Kamarád, and V. Sechovský, AIP Adv. 7, 055712 (2017).

    Google Scholar 

  17. B.J. Kennedy, C.J. Howard, and B. Chakoumakos, J. Phys. Condens. Matter 11, 1479 (1999).

    CAS  Google Scholar 

  18. K.H. Hellwege and A.M. Hellwege, eds., Ferroelectrics and Related Substances, New Series, Vol. 3 (Berlin: Springer, 1969).

    Google Scholar 

  19. M. Guennou, P. Bouvier, B. Krikler, J. Kreisel, R. Haumont, and G. Garbarino, Phys. Rev. B 82, 134101 (2010).

    Google Scholar 

  20. N.A. Noor, S.M. Alay-e-Abbas, M. Hassan, I. Mahmood, Z. Alahmed, and A.H. Reshak, Philos. Mag. 97, 1884 (2017).

    CAS  Google Scholar 

  21. E. Bousquet, P. Ghosez, and P. Phys, Rev. B 74, 180101 (2006).

    Google Scholar 

  22. D. Andrault and J.P. Poirier, Phys. Chem. Miner. 18, 91 (1991).

    CAS  Google Scholar 

  23. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz (Vienna: Technische Universität, 2001).

    Google Scholar 

  24. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    CAS  Google Scholar 

  25. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  26. D.J. Singh, Phys. Rev. B 82, 205102 (2010).

    Google Scholar 

  27. G.K.H. Madsen, K. Schwarz, and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    CAS  Google Scholar 

  28. S.U. Rehman, F.K. Butt, F. Hayat, B. Ul Haq, Z. Tariq, F. Aleem, and C. Li, J. Alloys. Compd. 733, 22 (2017).

    Google Scholar 

  29. F.K. Butt, B. UlHaq, S.U. Rehman, R. Ahmed, C. Cao, S. AlFaifi, and J. Alloys, Compounds 715, 438 (2017).

    CAS  Google Scholar 

  30. R.D. Shannon, Acta Crystallogr. Sect. A Cryst. Phys. Differ. Theor. Gen. Crystallogr. 32, 751 (1976).

    Google Scholar 

  31. N. Xu, H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, and F. Li, Int. J. Hydrog. Energy 35, 7295 (2010).

    CAS  Google Scholar 

  32. H. Wang, B. Wang, Q. Li, Z. Zhu, R. Wang, and C.H. Woo, Phys. Rev. B 75, 245209 (2007).

    Google Scholar 

  33. K. Igarashi, K. Koumoto, and H. Yanagida, J. Mater. Sci. 22, 2828 (1987).

    CAS  Google Scholar 

  34. F. El Haj Hassan and H. Akbarzadeh, Comput. Mater. Sci. 38, 362 (2006).

    CAS  Google Scholar 

  35. X. Ji, Y. Yu, J. Ji, J. Long, J. Chen, and D. Liu, J. Alloy. Compd. 623, 304 (2015).

    CAS  Google Scholar 

  36. Q. Mahmood, A. Javed, G. Murtaza, and S.M. Alay-e-Abbas, Mater. Chem. Phys. 162, 831 (2015).

    CAS  Google Scholar 

  37. A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, A.H. Reshak, and Y. Al-Douri, Comput. Mater. Sci. 45, 474 (2009).

    CAS  Google Scholar 

  38. V. Tvergaard and J.W. Hutshinson, J. Am. Ceram. Soc. 71, 157 (1988).

    CAS  Google Scholar 

  39. N.A. Noor, M. Rashid, S.M. Alay-e-Abbas, M. Raza, A. Mahmood, and S.M. Ramay, Mater. Sci. Semi. Proc. 49, 40 (2016).

    CAS  Google Scholar 

  40. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    CAS  Google Scholar 

  41. O. Ciftci, K. Colakoglu, E. Deligoz, and H. Ozissk, Mater. Chem. Phys. 108, 120 (2008).

    CAS  Google Scholar 

  42. Y.J. Hao, X.R. Chen, H.L. Cui, and Y.L. Bai, Phys. B 382, 118 (2006).

    CAS  Google Scholar 

  43. E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements, 1st ed. (New York: McGraw-Hill, 1973).

    Google Scholar 

  44. R. Singh and G. Balasubramanian, RSC Adv. 7, 37015 (2017).

    CAS  Google Scholar 

  45. M. Marathe, A. Grunebohm, T. Nishimatsu, P. Entel, and C. Ederer, Phys. Rev. B 93, 054110 (2016).

    Google Scholar 

  46. B. Ul Haq, S. AlFaify, R. Ahmed, F.K. Butt, and A. Laref, Mohd. Shkir Phys. Rev. B 97, 075438 (2018).

    Google Scholar 

  47. M. Rashid, N.A. Noor, B. Sabir, S. Ali, M. Sajjad, F. Hussain, N.U. Khan, B. Amin, and R. Khenata, Comput. Mater. Sci. 91, 285 (2014).

    CAS  Google Scholar 

  48. S. Maqsood, M. Rashid, F.U. Din, M.B. Saddique, and A. Laref, J. Electron. Mater. 47, 2032 (2018).

    CAS  Google Scholar 

  49. F. Wooten, Optical Properties of Solids (New York: Academic Press, 1972).

    Google Scholar 

  50. D.R. Penn, Phys. Rev. 128, 2093 (1962).

    CAS  Google Scholar 

  51. Q. Mahmood, M. Hassan, and J. Alloys, Compounds 704, 659 (2017).

    CAS  Google Scholar 

  52. K. Xiong, J. Robertson, and S.J. Clark, Appl. Phys. Lett. 89, 022907 (2006).

    Google Scholar 

  53. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).

    Google Scholar 

Download references

Acknowledgment

The author Asif Mahmood would like to acknowledge Researcher’s Supporting Project Number (RSP-2019/43), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Noor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, S., Noor, N.A., Afzal, Q. et al. Pressure-Induced Thermodynamic and Opto-Electronic Behavior of BeTiO3 Perovskite: A DFT Investigation. J. Electron. Mater. 49, 3072–3079 (2020). https://doi.org/10.1007/s11664-020-08035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08035-8

Keywords

Navigation