Skip to main content

Use of Magnetic Fields for Surface Modification of PbI2 Layers to Increase the Performance of Hybrid Perovskite Solar Cells

Abstract

Hybrid perovskite films are prepared via two-step spin coating. The impact of magnetic fields during the spin coating of the PbI2 precursor solution is assessed with atomic force microscopy and scanning electron microscopy of the obtained layers. Deeper and narrower peak–valley–peak formations are obtained in PbI2 films when the magnetic field applied and the spinning direction result in a Lorentz force that pushes the [PbI6]4− ions towards the inner area of the substrate. This produces rougher and more porous PbI2 films with an increased surface area that facilitates the infiltration of the methylammonium iodide and chloride precursor solution, thereby enhancing the formation of perovskite. Increased cell performance and more repeatable results are obtained when the PbI2 film is spin-coated under the influence of a negative magnetic field. Opposite effects are obtained when the direction of the magnetic field, and therefore the Lorentz force, is inverted. This demonstrates that a magnetic field can be used to modify the surface morphology of spin-coated thin films prepared from ionic precursor solutions.

This is a preview of subscription content, access via your institution.

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, JACS Commun. 131, 6050 (2009).

    Article  CAS  Google Scholar 

  2. M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, Prog. Photovolt. 27, 7 (2019).

    Google Scholar 

  3. E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-Y. Yang, J.H. Noh, and J. Seo, Nature 567, 7749 (2017).

    Google Scholar 

  4. M. Grätzel, Nat. Mater. 13, 838 (2014).

    Article  Google Scholar 

  5. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).

    Article  CAS  Google Scholar 

  6. K. Liang, D.B. Mitzi, and M.T. Prikas, Chem. Mater. 10, 403 (1998).

    Article  CAS  Google Scholar 

  7. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Energy Environ. Sci. 7, 2619 (2014).

    Article  CAS  Google Scholar 

  8. M. Liu, M.B. Johnston, and H.J. Snaith, Nature 501, 395 (2013).

    Article  CAS  Google Scholar 

  9. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Energy Environ. Sci. 7, 2934 (2014).

    Article  CAS  Google Scholar 

  10. X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y.M. Wang, X. Duan, T. Mueller, and Y. Huang, Science 348, 1230 (2015).

    Article  CAS  Google Scholar 

  11. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, Energy Environ. Sci. 9, 1989 (2016).

    Article  CAS  Google Scholar 

  12. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, and S.I. Seok, Science 356, 1376 (2017).

    Article  CAS  Google Scholar 

  13. C.M. Tsai, G.W. Wu, S. Narra, H.M. Chang, N. Mohanta, H.P. Wu, C.L. Wang, and E.W.G. Diau, J. Mater. Chem. A. 5, 739 (2017).

    Article  CAS  Google Scholar 

  14. G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. Van Franeker, W. Dane, S. Pathak, R.J. Sutton, G. Grancini, D.S. Ginger, R.A.J. Janssen, A. Petrozza, and H.J. Snaith, ACS Nano 9, 9380 (2015).

    Article  CAS  Google Scholar 

  15. M. Lv, X. Dong, X. Fang, B. Lin, S. Zhang, X. Xu, J. Ding, and N. Yuan, RSC Adv. 5, 93957 (2015).

    Article  CAS  Google Scholar 

  16. J. Ye, G. Liu, L. Jiang, H. Zheng, L. Zhu, X. Zhang, H. Wang, X. Pan, and S. Dai, Appl. Surf. Sci. 407, 427 (2017).

    Article  CAS  Google Scholar 

  17. A. Ummadisingu, L. Steier, J.Y. Seo, T. Matsui, A. Abate, W. Tress, and M. Grätzel, Nature 545, 208 (2017).

    Article  CAS  Google Scholar 

  18. C. Zhang, D. Sun, C.-X. Sheng, Y.X. Zhai, K. Mielczarek, A. Zakhidov, and Z.V. Vardeny, Nat. Phys. 11, 427 (2015).

    Article  CAS  Google Scholar 

  19. Y. Lin, X. Ye, Z. Wu, C. Zhang, Y. Zhang, H. Su, J. Yin, and J. Li, J. Mater. Chem. A. 6, 3986 (2018).

    Article  CAS  Google Scholar 

  20. H. Wang, J. Lei, F. Gao, Z. Yang, D. Yang, J. Jiang, J. Li, X. Hu, X. Ren, B. Liu, J. Liu, H. Lei, Z. Liu, and S.F. Liu, ACS Appl. Mater. Interfaces 9, 21756 (2017).

    Article  CAS  Google Scholar 

  21. A.N. Corpus-Mendoza, P.M. Moreno-Romero, and H. Hu, AIP Adv. 8, 055221 (2018).

    Article  Google Scholar 

  22. M. Salk, M. Fiederle, K.W. Benz, A.S. Senchenkov, A.V. Egorov, and D.G. Matioukhin, J. Cryst. Growth 138, 161 (1994).

    Article  CAS  Google Scholar 

  23. H.Y. Wang, S. Mitani, M. Motokawa, and H. Fujimori, J. Appl. Phys. 93, 9145 (2003).

    Article  CAS  Google Scholar 

  24. M. Tanase, D.M. Silevitch, A. Hultgren, L.A. Bauer, P.C. Searson, G.J. Meyer, and D.H. Reich, J. Appl. Phys. 91, 8549 (2002).

    Article  CAS  Google Scholar 

  25. A.K. Bentley, J.S. Trethewey, A.B. Ellis, and W.C. Crone, Nano Lett. 4, 487 (2004).

    Article  CAS  Google Scholar 

  26. E. Çadirli, H. Kaya, D. Räbiger, S. Eckert, and M. Gündüz, J. Alloys Compd. 647, 471 (2015).

    Article  Google Scholar 

  27. A. Ručinskienė, G. Bikulčius, L. Gudavičiūtė, and E. Juzeliūnas, Electrochem. Commun. 4, 86 (2002).

    Article  Google Scholar 

  28. X. Li, M. Zhang, B. Yuan, L. Li, and C. Wang, Electrochim. Acta 222, 619 (2016).

    Article  CAS  Google Scholar 

  29. R. Aslam and W. González-Viñas, Colloids Surfaces A 532, 530 (2017).

    Article  CAS  Google Scholar 

  30. M. Pichumani and W. González-Viñas, Soft Matter 9, 2506 (2013).

    Article  CAS  Google Scholar 

  31. Y.L. Liu, D.W. Li, J. He, X.Z. Xie, D. Chen, E.K. Yan, Y.J. Ye, and D.C. Yin, Rev. Sci. Instrum. 89, 105103 (2018).

    Article  Google Scholar 

  32. P.M. Moreno-Romero, A.N. Corpus-Mendoza, M.A. Millán-Franco, C.A. Rodríguez-Castañeda, D.M. Torres-Herrera, F. Liu, and H. Hu, J. Mater. Sci. Mater. Electron. 30, 17491 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asiel N. Corpus-Mendoza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 526 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corpus-Mendoza, A.N., Cruz-Silva, B.S., Ramirez-Zúñiga, G. et al. Use of Magnetic Fields for Surface Modification of PbI2 Layers to Increase the Performance of Hybrid Perovskite Solar Cells. J. Electron. Mater. 49, 3106–3113 (2020). https://doi.org/10.1007/s11664-020-08009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08009-w

Keywords