Skip to main content
Log in

Influence of Crystallographic Orientation on Schottky Barrier Formation in Gallium Oxide

  • Topical Collection: 18th Conference on Defects (DRIP XVIII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Highly rectifying graphite/β-Ga2O3 Schottky junctions have been prepared by a simple low-cost drop-casting process. The influence of two different crystal orientations on the current transport mechanism in the graphite-based Schottky junctions was investigated by direct-current (DC) and alternating-current (AC) electrical measurements. The nonideal behavior observed for both \( \left\langle {\bar{2}01} \right\rangle \) and \( \left\langle {010} \right\rangle \) crystallographic orientations can be explained by the lateral inhomogeneity of the junction related to the imperfection of the graphite/semiconductor interface. A lower density of interface states and their shorter time constants are reported for Schottky junctions formed on \( \left\langle {\bar{2}01} \right\rangle \) crystallographic plane, as reflected also by the higher effective barrier height and lower ideality factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Galazka, Semicond. Sci. Technol. 33, 113001 (2018).

    Article  Google Scholar 

  2. S.J. Pearton, J. Yang, P.H. CaryIV, F. Ren, J. Kim, M.J. Tadjer, and M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018).

    Article  Google Scholar 

  3. Y. Yao, R. Gangireddy, J. Kim, K.K. Das, R.F. Davis, and L.M. Porter, J. Vac. Sci. Technol. B 35, 03D113 (2017).

    Article  Google Scholar 

  4. E. Farzana, Z. Zhang, P.K. Paul, A.R. Arehart, and S.A. Ringel, Appl. Phys. Lett. 110, 202102 (2017).

    Article  Google Scholar 

  5. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, Appl. Phys. Lett. 108, 133503 (2016).

    Article  Google Scholar 

  6. J. Asanka, C.A. Ayayi, and D. Sarit, Semicond. Sci. Technol. 31, 115002 (2016).

    Article  Google Scholar 

  7. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, Appl. Phys. Lett. 94, 222102 (2009).

    Article  Google Scholar 

  8. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, J. Appl. Phys. 110, 063720 (2011).

    Article  Google Scholar 

  9. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, IEEE Electron Device Lett. 34, 493–495 (2013).

    Article  CAS  Google Scholar 

  10. L.J. Brillson and Y. Lu, J. Appl. Phys. 109, 121301 (2011).

    Article  Google Scholar 

  11. M. Handwerg, R. Mitdank, Z. Galazka, and S.F. Fischer, Semicond. Sci. Technol. 31, 125006 (2016).

    Article  Google Scholar 

  12. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, Jpn. J. Appl. Phys. 55, 1202B2 (2016).

    Article  Google Scholar 

  13. T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, Jpn. J. Appl. Phys. 13, 1578–1582 (1974).

    Article  CAS  Google Scholar 

  14. N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 71, 933–935 (1997).

    Article  CAS  Google Scholar 

  15. K. Makoto, H. Kenji, M. Tomoya, H. Akihiro, O. Takayoshi, O. Toshiyuki, K. Kimiyoshi, S. Kohei, K. Akito, and U. Osamu, Jpn. J. Appl. Phys. 55, 1202BB (2016).

    Article  Google Scholar 

  16. H. Fu, H. Chen, X. Huang, I. Baranowski, J. Montes, T.H. Yang, and Y. Zhao, IEEE Trans. Electron Devices 65, 3507–3513 (2018).

    Article  CAS  Google Scholar 

  17. L.A. Kosyachenko, R. Yatskiv, N.S. Yurtsenyuk, O.L. Maslyanchuk, and J. Grym, Semicond. Sci. Technol. 29, 015006 (2014).

    Article  Google Scholar 

  18. R. Yatskiv and J. Grym, J. Electron. Mater. 47, 5002–5006 (2018).

    Article  CAS  Google Scholar 

  19. S. Tiagulskyi, R. Yatskiv, and J. Grym, J. Electron. Mater. 47, 4950–4954 (2018).

    Article  CAS  Google Scholar 

  20. S.M. Sze, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley, 2007), p. 815.

    Google Scholar 

  21. R. Yatskiv and J. Grym, Phys. Status Solidi A Appl. Mater. 214, 1700143 (2017).

    Article  Google Scholar 

  22. F.A. Padovani and R. Stratton, Solid-State Electron. 9, 695–707 (1966).

    Article  Google Scholar 

  23. R.F. Schmitsdorf, T.U. Kampen, and W. Monch, Surf. Sci. 324, 249–256 (1995).

    Article  CAS  Google Scholar 

  24. T.U. Kampen and W. Monch, Surf. Sci. 331, 490–495 (1995).

    Article  Google Scholar 

  25. A. Hattab, J.L. Perrossier, F. Meyer, M. Barthula, H.J. Osten, and J. Griesche, Mater. Sci. Eng. B 89, 284–287 (2002).

    Article  Google Scholar 

  26. M.K. Hudait and S.B. Krupanidhi, Physica B 307, 125–137 (2001).

    Article  CAS  Google Scholar 

  27. G. Jian, Q. He, W. Mu, B. Fu, H. Dong, Y. Qin, Y. Zhang, H. Xue, S. Long, Z. Jia, H. Lv, Q. Liu, X. Tao, and M. Liu, AIP Adv. 8, 015316 (2018).

    Article  Google Scholar 

  28. Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, and Y. Hao, Appl. Phys. Lett. 112, 072103 (2018).

    Article  Google Scholar 

  29. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, and M. Willander, J. Appl. Phys. 112, 064506 (2012).

    Article  Google Scholar 

  30. W.A. Hill and C.C. Coleman, Solid-State Electron. 23, 987–993 (1979).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Czech Science Foundation Project 17-00546S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Yatskiv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatskiv, R., Tiagulskyi, S. & Grym, J. Influence of Crystallographic Orientation on Schottky Barrier Formation in Gallium Oxide. J. Electron. Mater. 49, 5133–5137 (2020). https://doi.org/10.1007/s11664-020-07996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07996-0

Keywords

Navigation