Skip to main content
Log in

Effect of Au Doping on Elastic, Thermodynamic, and Electronic Properties of η-Cu6Sn5 Intermetallic

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of substitution of Au for Cu on the elastic, thermodynamic, and electronic properties of hexagonal η-Cu6Sn5 intermetallic compound (IMC) are investigated by first-principles calculations. The results show that Au atoms preferentially occupy Cu4 or Cu3 site to form η-Cu5Au1Sn5 or η-Cu4Au2Sn5 IMC, respectively. Doping Au in η-Cu6Sn5 IMC forms a more stable thermodynamic structure than pure phase. The ductility of η-Cu6Sn5 IMC increases after substitution of Au for Cu. However, doping Au weakens the Young’s modulus, shear modulus, hardness, and Debye temperature of η-Cu6Sn5 IMC. The results for the charge density difference, total density of states, and partial density of states show that doping Au atoms can stabilize the structure of η-Cu6Sn5 IMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R. 49, 1 (2005).

    Article  Google Scholar 

  2. J.D. Bernal, Nature 122, 54 (1928).

    Article  CAS  Google Scholar 

  3. K. Larsson, L. Stenberg, and S. Lidin, Acta. Cryst. B 50, 636 (1994).

    Article  Google Scholar 

  4. G.C.D. Gangulee and M.B. Bever, Metall. Mater. Trans. B 4, 2063 (1973).

    Article  CAS  Google Scholar 

  5. K. Nogita, Intermetallics 18, 145 (2010).

    Article  CAS  Google Scholar 

  6. K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, and J. Read, Scr. Mater. 65, 922 (2011).

    Article  CAS  Google Scholar 

  7. K. Nogita, C.M. Gourlay, and T. Nishimura, JOM 61, 45 (2009).

    Article  CAS  Google Scholar 

  8. Y. Yu and J.G. Duh, Scr. Mater. 65, 783 (2011).

    Article  CAS  Google Scholar 

  9. U. Schwingenschlogl, C. Di Paola, K. Nogita, and C.M. Gourlay, Appl. Phys. Lett. 96, 061908 (2010).

    Article  Google Scholar 

  10. G. Zeng, S.D. McDonald, Q.F. Gu, S. Suenaga, Y. Zhang, J.H. Chen, and K. Nogita, Intermetallics 43, 85 (2013).

    Article  CAS  Google Scholar 

  11. J. Chen, C.M. Chen, R.H. Horng, D.S. Wuu, and J.S. Hong, J. Electron. Mater. 39, 2618 (2010).

    Article  CAS  Google Scholar 

  12. Y. Liu, F.L. Sun, H. Zhang, T. Xin, C.A. Yuan, and G.Q. Zhang, Microelectron. Reliab. 55, 1234 (2015).

    Article  CAS  Google Scholar 

  13. F. Yang and S.W. Chen, Intermetallics 18, 672 (2010).

    Article  CAS  Google Scholar 

  14. C.W. Chang, Q.P. Lee, C.E. Ho, and C.R. Kao, J. Electron. Mater. 35, 366 (2006).

    Article  CAS  Google Scholar 

  15. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  16. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  17. K. Nogita, D. Mu, S.D. McDonald, J. Read, and Y.Q. Wu, Intermetallics 26, 78 (2012).

    Article  CAS  Google Scholar 

  18. S. Shang, Y. Wang, and Z.K. Liu, Appl. Phys. Lett. 90, 101909 (2007).

    Article  Google Scholar 

  19. R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

    Article  Google Scholar 

  20. J.J. Yu, J.Y. Wu, L.J. Yu, H.W. Yang, and C.R. Kao, J. Mater. Sci. 52, 7166 (2017).

    Article  CAS  Google Scholar 

  21. G. Ghosh, J. Mater. Res. 19, 1439 (2004).

    Article  CAS  Google Scholar 

  22. R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, J. Mater. Res. 18, 2251 (2003).

    Article  CAS  Google Scholar 

  23. L. Jiang and N. Chawla, Scr. Mater. 63, 480 (2010).

    Article  CAS  Google Scholar 

  24. G. Ghosh and M. Asta, J. Mater. Res. 20, 3102 (2005).

    Article  CAS  Google Scholar 

  25. K. Mu, H. Tsukamoto, and H. Huang, Mater. Sci. Forum 654–656, 2450 (2010).

    Article  Google Scholar 

  26. D.K. Mu, H. Huang, S.D. McDonald, and K. Nogita, J. Electron. Mater. 42, 304 (2013).

    Article  CAS  Google Scholar 

  27. C. Yu, J. Liu, H. Lu, and P. Li, Intermetallics 15, 1471 (2007).

    Article  CAS  Google Scholar 

  28. S.X. Chen, W. Zhou, and P. Wu, Intermetallics 54, 187 (2014).

    Article  CAS  Google Scholar 

  29. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  CAS  Google Scholar 

  30. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 10, 6131 (1992).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51572190 & 51805497).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Zhang or Ping Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Zhang, W., Mao, Z. et al. Effect of Au Doping on Elastic, Thermodynamic, and Electronic Properties of η-Cu6Sn5 Intermetallic. J. Electron. Mater. 49, 3031–3038 (2020). https://doi.org/10.1007/s11664-020-07993-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07993-3

Keywords

Navigation