Skip to main content

Electromagnetic Interference (EMI): Measurement and Reduction Techniques

Abstract

Electromagnetic interference (EMI) is one of the biggest challenges faced during the production of any electronic device. The effect on the performance of the instrument due to these inevitable interferences must be carefully measured to understand and quantify the electromagnetic compatibility (EMC) of the instrument under test. If the EMI profile of the system does not meet the accepted standards, then it becomes necessary to take measures to reduce the influence of these unwanted interferences so that the equipment can be used in the real world. Unfortunately, research and studies on EMI and EMC have not received their due attention from the scientific community. Moreover, the literature available for this area of research is scattered where different sources provide information on one or more (but not all) aspects of EMI/EMC while ignoring the others. With the objective of encompassing this extremely significant area of research in its entirety, this review presents both EMI measurement techniques and EMI reduction techniques in detail. EMI measurement techniques are presented under two sections that deal with emission testing and immunity testing, respectively. Herein, EMI reduction techniques are presented under four sections, where electromagnetic shielding has been given special attention under which various methods used by the scientific community to measure the shielding effectiveness of a material or microwave absorber and its application in EMI reduction are illustrated. This is followed by EMI filters, circuit topology modification and spread spectrum. This review can help students and young scientists in this area to get an idea of the ways to conduct EMI tests as well as the ways that can be employed to reduce the EMI of the system, depending on the application.

References

  1. J.L.N. Violette, D.R.J. White, and M.F. Violette, Electromagnetic Compatibility Handbook (New York: Springer, 1987).

    Book  Google Scholar 

  2. M.J. Horst, W.A. Serdijn, and A.C. Linnenbank, EMI-Resilient Amplifier Circuits (Berlin: Springer, 2013).

    Google Scholar 

  3. M. Shalaby, W. Saad, M. Shokair, and N.W. Messiha, Wirel. Pers. Commun. 96, 2223 (2017).

    Article  Google Scholar 

  4. D. Morgan, A Handbook for EMC Testing and Measurement (London: IET, 1994).

    Book  Google Scholar 

  5. B.R. Archambeault and J. Drewniak, PCB Design for Real-World EMI Control (Berlin: Springer, 2013).

    Google Scholar 

  6. S.H. Voldman and E.S.D. Testing, From Components to Systems (New York: Wiley, 2016).

    Book  Google Scholar 

  7. M.I. Montrose and E.M. Nakauchi, Testing for EMC Compliance: Approaches and Techniques (New York: Wiley, 2004).

    Book  Google Scholar 

  8. D.G. Baker, Electromagnetic Compatibility: Analysis and Case Studies in Transportation (New York: Wiley, 2015).

    Google Scholar 

  9. A. Raveendran, M.T. Sebastian, and S. Raman, J. Electron. Mater. 48, 2601 (2019).

    Article  CAS  Google Scholar 

  10. J.M. Thomassin, D. Vuluga, M. Alexandre, C. Jrme, I. Molenberg, I. Huynen, and C. Detrembleur, Polym. J. 53, 169 (2012).

    Article  CAS  Google Scholar 

  11. X.C. Wang, Y.Y. Sun, J.H. Zhu, Y.H. Lou, and W.Z. Lu, IEEE Trans. Electromagn. Compat. 59, 996 (2017).

    Article  Google Scholar 

  12. S. Wang, Y.Y. Maillet, F. Wang, D. Boroyevich, and R. Burgos, IEEE Trans. Power Electron. 25, 1034 (2010).

    Article  Google Scholar 

  13. X. Chen, W. Chen, Y. Ren, L. Qiao, and X. Yang, in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4671–4674 (2018).

  14. S. Maniktala, Switching Power Supplies A-Z, 2nd ed., ed. S. Maniktala (London: Newnes, 2012), p. 597.

    Chapter  Google Scholar 

  15. L.A. Dina, P.M. Nicolae, I.D. Smarandescu, and V. Voicu, in 2017 International Conference on Electromechanical and Power Systems (SIELMEN), pp. 202–207 (2017).

  16. P.T. Trakadas and C.N. Capsalis, IEEE Trans. Electromagn. Compat. 43, 29 (2001).

    Article  Google Scholar 

  17. Z.N. Chen, D. Liu, H. Nakano, X. Qing, and T. Zwick, Handbook of Antenna Technologies (Singapore: Springer, 2016).

    Book  Google Scholar 

  18. R.F. German and R. Calcavecchio, in 1980 IEEE International Symposium on Electromagnetic Compatibility, pp. 1–7 (1980).

  19. P. Shen, Y. Qi, W. Yu, and F. Li, IEEE Trans. Electromagn. Compat. 59, 1708 (2017).

    Article  Google Scholar 

  20. M. Ameya, S. Kurokawa, I. Watanabe, M. Yamaguchi, and R. Hasumi, in 10th International Symposium on Electromagnetic Compatibility, pp. 186–191 (2011).

  21. M. Pospisilik, S. Kovar, and V. Kresalek, Data Brief 21, 234 (2018).

    Article  Google Scholar 

  22. M.H. Nisanci, E.U. Kksille, Y. Cengizc, A. Orlandi, and A. Duffy, Expert Syst Appl. 38, 1689 (2011).

    Article  Google Scholar 

  23. L.R. Arnaut, Wave Motion 51, 673 (2014).

    Article  Google Scholar 

  24. P.C. Chen, K.Y. Yang, Y.H. Lin, W.S. Wang, T.Y. Wu, and R.B. Wu, IEEE Trans. Compon. Packag. Manuf. Technol. 7, 1852 (2017).

    Article  Google Scholar 

  25. K. Malaric, J. Bartolic, and R. Malaric, Measurement 38, 219 (2005).

    Article  Google Scholar 

  26. H.H. Park, H.B. Park, and H.S. Lee, IEEE Trans. Electromagn. Compat. 55, 257 (2013).

    Article  CAS  Google Scholar 

  27. X. Wang and R. Vick, IEEE Electromagn. Compat. 6, 32 (2017).

    Article  Google Scholar 

  28. X. Gao, D. Su, L. Zhai, and X. Zhang, Energy Proc. 88, 662 (2016).

    Article  Google Scholar 

  29. J. Li, S. Li, S. Xing, and R. Kan, in 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, pp. 378–380 (2009).

  30. Z.M. Al-Daher, A. Nothofer, C. Christopoulos, and S. Greedy, in 2010 Loughborough Antennas \& Propagation Conference, pp. 133–136 (2010).

  31. B. Palczynska, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC /I \& CPS Europe), pp. 1–6 (2017).

  32. K.L. Chua, M.Z.M. Jenu, M.O. Wong, S.H. Ying, in 2013 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 1–4 (2013).

  33. D.A. Hill, Electromagnetic Fields in Cavities: Deterministic and Statistical Theories (New York: IEEE Press, 2009).

    Book  Google Scholar 

  34. M.L. Crawford and G. Koepke, Design, Evaluation and Use of a Reverberation Chamber for Performing Electromagnetic Susceptibility/Vulnerability Measurement: Technical Note 1092. (National Institute of Standards and Technology, Gaithersburg, Maryland USA, 1999). https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1092.pdf.

  35. B. Zhang, Z. Yuan, and J. He, in 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, pp. 769–772 (2012).

  36. M. Chaluvadi, G. Vincentraj, and K.G. Thomas, in IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017), pp. 1352–1355 (2017).

  37. S. Kennedy, M.R. Yuce, and J.M. Redoute, in 2015 IEEE Global Electromagnetic Compatibility Conference (GEMCCON), pp. 1–5 (2017).

  38. J. Malack, IEEE Trans. Electromagn. Compat. 20, 346 (1978).

    Article  Google Scholar 

  39. B. Deutschmann, G. Winkler, and R. Jungreithmair, in 2002 IEEE International Symposium on Electromagnetic Compatibility, pp. 407–412 (2002).

  40. F. Fiori and F. Musolino, IEEE Trans. Instrum. Meas. 52, 839 (2003).

    Article  Google Scholar 

  41. M.L. Crawford, IEEE Trans. Electromagn. Compat. 16, 189 (1974).

    Article  Google Scholar 

  42. K. Ivanus and A. Baric, in 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 110–114 (2014).

  43. Testing and Measurement Techniques Part 8: Power Frequency Magnetic Field Immunity Test, Document IEC 61000-4 (2009).

  44. Testing and Measurement Techniques Part 9: Pulse Magnetic Field Immunity Test, Document IEC 61000-4 (2001).

  45. Testing and Measurement Techniques Part 10: Damped Oscillatory Magnetic Field Immunity Test, Document IEC 61000-4 (2001).

  46. Y. Yang, Z. Song, L. Jiang, B. Rao, and M. Zhang, IEEE Trans. Ind. Electron. (2018). https://doi.org/10.1109/TIE.2018.2807420.

    Article  Google Scholar 

  47. R.D. Leo and V.M. Primiani, in 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, pp. 337–341 (2005).

  48. A.M. Silaghi, A.D. Sabata, F. Alexa, A. Buta, and S. Baderca, in 2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC), pp. 1–4 (2016).

  49. V. Rodriguez, in 2014 International Symposium on Electromagnetic Compatibility, Tokyo, pp. 681–684 (2014).

  50. J.R. Regue, M. Ribo, and J.M. Garrell, in 2001 IEEE EMC International Symposium. Symposium Record. International Symposium on Electromagnetic Compatibility (Cat. No.01CH37161), pp. 325–329 (2001).

  51. M.A. Salhi, S. Cakr, M. Cinar, B. Tektas, and M. Cetintas, in 2016 International Symposium on Electromagnetic Compatibility—EMC EUROPE, pp. 25–256 (2016).

  52. Testing and Measurement Techniques Part 3: Radiated, radio-frequency, electromagnetic field immunity test, Document IEC 61000-4 (2006).

  53. K. Armstrong, in 2009 IEEE International Symposium on Electromagnetic Compatibility, pp. 30–35 (2009).

  54. C.K. Tang, K.H. Chan, L.C. Fung, and S.W. Leung, IEEE Trans. Electromagn. Compat. 51, 659 (2009).

    Article  Google Scholar 

  55. S. Valavan, Understanding Electromagnetic Compliance Tests in Digital Isolators (Texas Instruments, 2014). http://www.ti.com/lit/wp/slyy064/slyy064.pdf.

  56. S. Cakr, O. Sen, S. Acak, and M. Cetintas, in 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), pp. 1260–1265 (2015).

  57. R. Heinrich and D. Dutschmann, in IEEE 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, pp. 990–993 (2010).

  58. J. Li, Z. Gong, S. Jin, H. Tian, and S. Ma, in 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), pp. 1–3 (2017).

  59. S. Cakr, O. Sen, S. Acak, M. Azpurua, F. Silva, and M. Cetintas, IEEE Electromagn Compat 5, 45 (2016).

    Article  Google Scholar 

  60. M. Camp, H. Garbe, and D. Nitsch, in 2002 IEEE International Symposium on Electromagnetic Compatibility, pp. 87–92 (2002).

  61. K.L. Kaiser, Electrostatic Discharge (Boca Raton: Taylor \& Francis Group, 2006).

    Google Scholar 

  62. J.J. Liou and K. Iniewski, Electrostatic Discharge Protection: Advances and Applications (New York: CRC Press Taylor \& Francis Group, 2016).

    Google Scholar 

  63. H. Urbancokova, J. Valouch, and S. Kovar, J. Eng. Sci. Technol. Rev. 9, 14 (2016).

    Article  Google Scholar 

  64. K. Wang, D. Pommerenke, R. Chundru, T.V. Doren, J.L. Drewniak, and A. Shashindranath, IEEE Trans. Electromagn. Compat 45, 258 (2003).

    Article  Google Scholar 

  65. I. Mori, O. Fujiwara, S. Ishigami, and Y. Yamanaka, IEEJ Trans. EIS 125, 1798 (2005).

    Article  Google Scholar 

  66. System-Level ESD Protection Guide. (Texas Instruments, 2018). http://www.ti.com/lit/sg/sszb130c/sszb130c.pdf (2018).

  67. Testing and Measurement Techniques Part 2: Electrostatic Discharge Immunity Test, Document IEC 61000-4 (2008).

  68. K. Nagai, D. Anzai, and J. Wang, in 2017 IEEE Conference on Antenna Measurements \& Applications (CAMA), pp. 144–145 (2017).

  69. T. Ishida, S. Nitta, F. Xiao, Y. Kami, and O. Fujiwara, in 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), pp. 839–842 (2015).

  70. P.S. Katsivelis, I.F. Gonos, and I.A. Stathopulos, J. Electrostat. 77, 182 (2015).

    Article  Google Scholar 

  71. T. Yoshida, in 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), pp. 445–447 (2016).

  72. M. Kohani, A. Bhandare, L. Guan, D. Pommerenke, and M.G. Pecht, IEEE Trans. Electromagn. Compat. 60, 1304 (2018).

    Article  Google Scholar 

  73. J. Zhou, K. Ghosh, S. Xiang, X. Yan, A. Hosseinbeig, J. Lee, and D. Pommerenke, IEEE Trans. Electromagn. Compat. 60, 1313 (2018).

    Article  Google Scholar 

  74. J. Park, J. Lee, C. Jo, B. Seol, and J. Kim, in 2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), pp. 1–6 (2018).

  75. J. Koo, L. Han, S. Herrin, R. Moseley, R. Carlton, D.G. Beetner, and D. Pommerenke, IEEE Trans. Electromagn. Compat 51, 611 (2009).

    Article  Google Scholar 

  76. Z. Zhou and Q. Jiang, in 2002 3rd International Symposium on Electromagnetic Compatibility, pp. 718–721 (2002).

  77. Testing and Measurement Techniques Part 4: Testing and measurement techniques—Electrical fast transient/burst immunity test, Document IEC 61000-4, (2012).

  78. B. Xiao, H. Yu, J. Wan, L. Jifang, in 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), pp. 1–4 (2017).

  79. T. Williams, EMC for Product Designers, 5th ed. (London: Newnes, 2016), pp. 215–217.

    Google Scholar 

  80. M. Fontana and T.H. Hubing, IEEE Trans. Electromagn. Compat. 57, 188 (2015).

    Article  Google Scholar 

  81. K. Taniguchi, M. Nagata, A. Tsukioka, D. Fujimoto, N. Miura, T. Egami, R. Akimoto, K. Niinomi, T. Komatsu, Y. Fukuba, and A. Tomishima, in 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMCCompo), pp. 59–63 (2017).

  82. S. Matsushima, T. Matsushima, T. Hisakado, and O. Wada, IEEE Electromagn. Compat. 7, 46 (2018).

    Article  Google Scholar 

  83. D.H. Pohren, A.S. Roque, T.I. Kranz, E.P.P. Freitas, and C.E. Pereira, IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2019.2901639.

    Article  Google Scholar 

  84. J. Wu, B. Li, W. Zhu, H. Wang, and L. Zheng, Microelectron. Reliab. 76–77, 708 (2017).

    Article  Google Scholar 

  85. D. Zhang, T. Hubing, A. Ritter, and C. Nies, IEEE Trans. Compon. Packag. Manuf. Technol. 6, 553 (2016).

    Article  CAS  Google Scholar 

  86. S.B. Smith and R.B. Standler, IEEE Trans. Power Del. 7, 1275 (1992).

    Article  Google Scholar 

  87. C.F.M. Carobbi, A. Bonci, M. Stellini, and M. Borsero, IEEE Trans. Instrum. Meas. 62, 1840 (2013).

    Article  Google Scholar 

  88. E. Tas, F. Pythoud, and B. Muehlemann, in 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), pp. 482–487 (2018).

  89. Testing and Measurement Techniques Part 5: Part 4-5: Testing and measurement techniques Surge immunity test, Document IEC 61000-4 (2005).

  90. D.W. Harberts, in 2016 International Symposium on Electromagnetic Compatibility—EMC EUROPE, pp. 894–897 (2016).

  91. Testing and Measurement Techniques Part 5: Part 4–5: Testing and measurement techniques Voltage dips, short interruptions and voltage variations immunity tests, Document IEC 61000-4 (2017).

  92. B. Renders, W.R. Ryckaert, K. De Gusseme, K. Stockman, and L. Vandevelde, Renew. Energy 33, 1011 (2008).

    Article  Google Scholar 

  93. J.G. Nielsen and F. Blaabjerg, Trans. Ind. Appl. 41, 1272 (2005).

    Article  Google Scholar 

  94. S. Sankaran, K. Deshmukh, M.B. Ahamed, and S.K. Khadheer Pasha, Compos. Part A 114, 49 (2018).

    Article  CAS  Google Scholar 

  95. A. Tamburrano, D. Desideri, A. Maschio, and M.S. Sarto, IEEE Trans. Electromagn. Compat. 56, 1386 (2014).

    Article  Google Scholar 

  96. P.F. Wilson, M.T. Ma, and J.W. Adams, IEEE Trans. Electromagn. Compat. 30, 239 (1988).

    Article  Google Scholar 

  97. M.S. Sarto and A. Tamburrano, IEEE Trans. Electromagn. Compat. 48, 331 (2006).

    Article  Google Scholar 

  98. P.F. Wilson, M.T. Ma, and J.W. Adams, IEEE Trans. Electromagn. Compat. 30, 251 (1988).

    Article  Google Scholar 

  99. A. Nishikata, R. Saito, and Y. Yamanaka, in Symposium Record of 2004, pp. 609–612 (2004).

  100. M. Rudd, T.C. Baum, and K. Ghorbani, IEEE Trans. Instrum. Meas. (2019). https://doi.org/10.1109/TIM.2019.2895930.

    Article  Google Scholar 

  101. J. Carlsson, K. Karlsson, and A. Johansson, in International Symposium on Electromagnetic Compatibility—EMC EUROPE, pp. 17–21 (2012).

  102. C.L. Holloway, D.A. Hill, J. Ladbury, G. Koepke, and R. Garzia, IEEE Trans. Electromagn. Compat. 35, 350 (2003).

    Article  Google Scholar 

  103. V. Safarova, M. Tunak, M. Truhlar, and J. Militky, Text. Res. J. 86, 44 (2015).

    Article  CAS  Google Scholar 

  104. S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, and D.C. Trivedi, J. Appl. Polym. Sci. 112, 2073 (2009).

    Article  CAS  Google Scholar 

  105. N. Dvurechenskaya, P.R. Bajurko, R.J. Zieliski, and Y. Yashchyshyn, Metrol. Meas. Syst. 20, 217 (2013).

    Article  Google Scholar 

  106. I. Araz, Turk. J. Electr. Eng. Comput. Sci. 26, 2996 (2018).

    Google Scholar 

  107. P. Saini and M. Arora, Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes (InTECH, 2012). https://doi.org/10.5772/48779 (2012).

  108. X.C. Tong, Advanced Material and Design for Electromagnetic Interference Shielding (Boca Raton: CRC Press, 2009).

    Google Scholar 

  109. M.T. Sebastian, R. Ubic, and H. Jantunen, Microwave Materials and Applications (New York: Wiley, 2017).

    Book  Google Scholar 

  110. S.A. Schelkunoff, Electromagnetic Waves (Princeton, 1943).

  111. S. Celozzi, R. Araneo, and G. Lovat, Electromagnetic Shielding (New York: Wiley, 2008).

    Book  Google Scholar 

  112. J.D. Kraus, Electromagnetics (New York: McGraw-Hill, 1992).

    Google Scholar 

  113. F.P. Miller, A.F. Vandome, and J. McBrewster, Faraday Cage (VDM Publishing, 2009).

  114. V.K. Kanth and S. Raghavan, IJEL (2018). https://doi.org/10.1080/21681724.2018.1545926.

    Article  Google Scholar 

  115. S. Stefanou, J.S. Hamel, P. Baine, M. Bain, B.M. Armstrong, H.S. Gamble, M. Kraft, and H.A. Kemhadjian, IEEE Trans. Electron Devices 51, 486 (2004).

    Article  Google Scholar 

  116. S.J. Chapman, D.P. Hewett, and L.N. Trefethen, SIAM Rev. 57, 398 (2015).

    Article  Google Scholar 

  117. S. Kumar, R. Bhooshan, S. Varshney, C. Verma, and L. Gideon, in 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC), pp. 1–3 (2015).

  118. J.R. Solin, IEEE Trans. Electromagn. Compat. 59, 529 (2017).

    Article  Google Scholar 

  119. J.H. Wu, J. Scholvin, J.A. del Alamo, and K.A. Jenkins, IEEE Microw. Wireless Compon. Lett. 11, 410 (2001).

    Article  Google Scholar 

  120. D. Moongilan and E. Mitchell, in 2008 IEEE International Symposium on Electromagnetic Compatibility, pp. 1–6 (2008).

  121. T. Claeys, J. Catrysse, D. Pissoort, and Y. Arien, in 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), pp. 725–729 (2018).

  122. A.K. Singh, M.P. Abegaonkar, S.K. Koul, in 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), pp. 243–246 (2017).

  123. G. Li, L. Sheng, L. Yu, K. An, W. Ren, and X. Zhao, Mater. Sci. Eng. B 193, 153 (2015).

    Article  CAS  Google Scholar 

  124. M.M. Tirkey and N. Gupta, Electromagn. Compat. 8, 59 (2019).

    Article  Google Scholar 

  125. N.N. Ali, R.A.B. Al-Marjeh, Y. Atassi, A. Salloum, A. Malki, and M. Jafarian, J. Magn. Magn. Mater. 453, 53 (2018).

    Article  CAS  Google Scholar 

  126. K.S.L. Al-badri, JKSUS (2018). https://doi.org/10.1016/j.jksus.2018.07.013.

    Article  Google Scholar 

  127. A. Emplit, F.F. Tao, C. Bailly, and I. Huynen, in 2013 European Microwave Conference, pp. 778–781 (2013).

  128. M. Jafarian, S.S.S. Afghahi, Y. Atassi, and M. Salehi, J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.09.047.

    Article  Google Scholar 

  129. Y. Yang and M.C. Gupta, Nano Lett. 5, 2131 (2005).

    Article  CAS  Google Scholar 

  130. J. Ma, M. Zhan, and K. Wang, ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am5067095.

    Article  Google Scholar 

  131. T. Beeharry, R. Yahiaoui, K. Selemani, and H.H. Ouslimani, Sci. Rep. 8, 382 (2018).

    Article  CAS  Google Scholar 

  132. I.W. Nam and H.K. Lee, Constr. Build. Mater. 115, 651 (2016).

    Article  CAS  Google Scholar 

  133. D. Micheli, A. Vricella, R. Pastore, A. Delfini, R.B. Morles, M. Marchetti, F. Santoni, L. Bastianelli, F. Moglie, V.M. Primiani, V. Corinaldesi, A. Mazzoli, and J. Donnini, Constr. Build. Mater. 131, 267 (2017).

    Article  CAS  Google Scholar 

  134. M. Ozturk, O. Akgol, U.K. Sevim, M. Karaaslan, M. Demirci, and E. Unal, Constr. Build. Mater. 165, 58 (2018).

    Article  Google Scholar 

  135. D.P. Schmitz, T.I. Silva, S.D.A.S. Ramoa, G.M.O. Barra, A. Pegoretti, and B.G. Soares, J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.46546.

    Article  Google Scholar 

  136. R. Li, H. Lin, P. Lan, J. Gao, Y. Huang, Y. Wen, and W. Yang, Polymers (2018). https://doi.org/10.3390/polym10121319.

    Article  Google Scholar 

  137. M.H. Al-Saleh, Synth. Met. 217, 322 (2016).

    Article  CAS  Google Scholar 

  138. N. Abdelal, J. Ind. Text. (2018). https://doi.org/10.1177/1528083718798632.

    Article  Google Scholar 

  139. Y. Jia, K. Li, L. Xue, J. Ren, S. Zhang, and H. Li, Carbon 111, 299 (2017).

    Article  CAS  Google Scholar 

  140. Y. Wang, F. Gu, L. Ni, K. Liang, K. Marcus, S. Liu, F. Yang, J. Chen, and Z. Feng, Nanoscale 9, 18318 (2017).

    Article  CAS  Google Scholar 

  141. H. Zhao, L. Hou, S. Bi, and Y. Lu, ACS Appl. Mater. Interfaces 9, 33059 (2017).

    Article  CAS  Google Scholar 

  142. R. Rohini and S. Bose, Compos. Part B 161, 578 (2019).

    Article  CAS  Google Scholar 

  143. C. Xianhua, G. Yuxiao, and P. Fusheng, Rare Met. Mater. Eng. 45, 13 (2016).

    Article  Google Scholar 

  144. D. Xing, L. Lu, K.S. Teh, Z. Wan, Y. Xie, and Y. Tang, Carbon 132, 32 (2018).

    Article  CAS  Google Scholar 

  145. S. Mishra, P. Katti, S. Kumar, and S. Bose, Chem. Eng. Sci. 357, 384 (2018).

    Article  CAS  Google Scholar 

  146. Y. Hu, H. Zhang, F. Li, X. Cheng, and T. Chen, Polym. Test. 29, 609 (2010).

    Article  CAS  Google Scholar 

  147. R. Kumar, H.K. Choudhary, A.V. Anupama, A.V. Menon, S.P. Pawar, S. Bosec, and B. Sahoo, New J. Chem. (2019). https://doi.org/10.1039/c9nj00639g.

    Article  Google Scholar 

  148. X. Yu, Z. Shen, and C. Cai, Vacuum 83, 1438 (2009).

    Article  CAS  Google Scholar 

  149. D. Kim, Y. Kim, and J.W. Kim, Mater. Des. 89, 703 (2016).

    Article  CAS  Google Scholar 

  150. N.N. Lu, X.J. Wang, L.L. Meng, C. Ding, W.Q. Liu, H.L. Shi, X.S. Hu, and K. Wu, J. Alloys Compd. 650, 871 (2015).

    Article  CAS  Google Scholar 

  151. G.H. Kang and S.H. Kim, Appl. Surf. Sci. 380, 114 (2016).

    Article  CAS  Google Scholar 

  152. J. Koprowska, J. Ziaja, and J. Janukiewicz, in 2008 International Symposium on Electromagnetic Compatibility—EMC Europe, pp. 1–4 (2008).

  153. A. Hulle and A. Powar, J. Text. Sci. Eng. (2018). https://doi.org/10.4172/2165-8064.1000347.

    Article  Google Scholar 

  154. M. Tian, M. Du, L. Qu, S. Chen, S. Zhuabc, and G. Han, RSC Adv. 7, 42641 (2017).

    Article  CAS  Google Scholar 

  155. Y. Tan, J. Li, Y. Gao, J. Li, S. Guo, and M. Wang, Appl. Surf. Sci. 458, 236 (2018).

    Article  CAS  Google Scholar 

  156. L. Geng, P. Zhu, Y. Wei, R. Guo, C. Xiang, C. Cui, and Y. Li, Cellulose 26, 2833 (2019).

    Article  CAS  Google Scholar 

  157. J.W. Ott, Electromagnetic Compatibility Engineering (New York: Wiley, 2011), pp. 464–467.

    Google Scholar 

  158. R.L. Ozenbaugh and T.M. Pullen, EMI Filter Design, 2nd ed. (Boca Raton: CRC Press, 2000).

    Book  Google Scholar 

  159. S. Wang, F.C. Lee, and W.G. Odendaal, IEEE Trans. Power Electron. 20, 974 (2005).

    Article  Google Scholar 

  160. H.M. Schlicke, IEEE Trans. Electromagn. Compat. 6, 47 (1964).

    Article  Google Scholar 

  161. F.O. Johnson, in 1969 IEEE Electromagnetic Compatibility Symposium Record, pp. 336–341 (1969).

  162. D.M. Mitchell, IEEE Trans. Electromagn. Compat. 20, 457 (1978).

    Article  Google Scholar 

  163. C.R. Paul and K.B. Hardin, IEEE Trans. Electromagn. Compat. 30, 553 (1988).

    Article  Google Scholar 

  164. F.Y. Shih, D.Y. Chen, Y.P. Wu, and Y.T. Chen, IEEE Trans. Power Electron. 11, 170 (1996).

    Article  Google Scholar 

  165. H.F. Chen, C.Y. Yeh, and K.H. Lin, IEEE Trans. Power Electron. 24, 2867 (2009).

    Article  Google Scholar 

  166. S. Boonruang, V. Tarateeraseth, in 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 756–759 (2018).

  167. L. Nan and Y. Yugang, in 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference, pp. 1–5 (2006).

  168. Y. Maillet, R. Lai, S. Wang, F. Wang, R. Burgos, and D. Boroyevich, IEEE Trans. Power Electron. 25, 1163 (2010).

    Article  Google Scholar 

  169. D. Shin, S. Kim, G. Jeong, J. Park, J. Park, K.J. Han, and J. Kim, IEEE Trans. Electromagn. Compat. 57, 660 (2015).

    Article  Google Scholar 

  170. D. Hamza, M. Sawan, and P.K. Jain, IET Power Electron. 4, 776 (2011).

    Article  Google Scholar 

  171. R. Goswami, S. Wang, E. Solodovnik, and K. Karimi, IEEE J. Emerg. Sel. Topics Power Electron 7, 576 (2019).

    Article  Google Scholar 

  172. N. Valentine, M.H. Azarian, and M. Pecht, Microelectron. Reliab. 92, 123 (2019).

    Article  CAS  Google Scholar 

  173. S.H. Ryu, S.B. Park, and S.W. Kim, in 2015 IEEE International Conference on Consumer Electronics (ICCE), pp. 610–611 (2015).

  174. A. Bhargava, D. Pommerenke, K.W. Kam, F. Centola, and C.W. Lam, IEEE Trans. Electromagn. Compat. 53, 806 (2011).

    Article  Google Scholar 

  175. C.H. Lee, C.Y. Yao, H.C. Li, D.B. Lin, and H.P. Lin, in 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), pp. 1568–1571 (2017).

  176. K.B. Hardin, J.T. Fessler, and D.R. Bush, in Proceedings of IEEE Symposium on Electromagnetic Compatibility, pp. 227–231 (1994).

  177. P.M. Vidya and S. Sudha, in 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), pp. 213–217 (2016).

Download references

Acknowledgments

This work was financially supported by University Grants Commission (UGC), Govt. of India under UGC-FRP (Faculty Recharge Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujith Raman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathur, P., Raman, S. Electromagnetic Interference (EMI): Measurement and Reduction Techniques. J. Electron. Mater. 49, 2975–2998 (2020). https://doi.org/10.1007/s11664-020-07979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07979-1

Keywords

  • electromagnetic interference (EMI)
  • EMI testing
  • shielding effectiveness
  • microwave absorber