Skip to main content
Log in

Temperature Dependence of Raman and Photoluminescence Spectra of Ternary Alloyed CdSe0.3Te0.7 Quantum Dots

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Raman and photoluminescence spectra of ternary alloyed CdSe0.3Te0.7 quantum dots (QDs) have been studied at temperatures between 84 K and 293 K. The average diameter of QDs is about 5.1 nm. The temperature dependence of the longitudinal optical (LO) phonon frequencies and the phonon band width was analyzed and the anharmonic constants relating to various high-order phonon processes was determined. While the three-phonon processes plays a dominant role in the temperature-dependent shift of the LO-phonon frequencies, the four-phonon processes contribute to the increase of the phonon linewidth with increasing temperature. The photoluminescence (PL) spectra were used to study the temperature dependence of the bandgap, the linewidth and the integrated PL intensity. At low temperatures below about 120 K, the PL linewidth decreases and the PL intensity increases as temperature increases. This temperature behavior can be ascribed to the exciton fine structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhong, M. Han, Z. Dong, T.J. White, and W. Knoll, J. Am. Chem. Soc. 125, 8589 (2003)

    CAS  Google Scholar 

  2. R.E. Bailey and S. Nie, J. Am. Chem. Soc. 125, 7100 (2003)

    CAS  Google Scholar 

  3. H. Zou, M. Liu, D. Zhou, X. Zhang, Y. Liu, B. Yang, and H. Zhang, J. Phys. Chem. C 121, 5313 (2017)

    CAS  Google Scholar 

  4. Z.D. Fu, Y.S. Cui, S.Y. Zhang, J. Chen, D.P. Yu, and S.L. Zhang, Appl. Phys. Lett. 90, 263113 (2007)

    Google Scholar 

  5. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, J. Phys. Chem. C 111, 5846 (2007)

    CAS  Google Scholar 

  6. D.N. Talwar, Z.C. Feng, J.-F. Lee, and P. Becla, Phys. Rev. B 87, 165208 (2013)

    Google Scholar 

  7. Y.I. YuM Azhniuk, V.V. Hutych, L.A. Lopushansky, A.V. Prots, and B.R.T.Z. Gomonnai, Phys. Status Solidi C 6, 2064 (2009)

    Google Scholar 

  8. S.A. Crooker, T. Barrick, J.A. Hollingsworth, and V.I. Klimov, Appl. Phys. Lett. 82, 2793 (2003)

    CAS  Google Scholar 

  9. Y. Nonoguchi, T. Nakashima, and T. Kawai, J. Phys. Chem. C 111, 11811 (2007)

    CAS  Google Scholar 

  10. E. Lifshitz, R. Vaxenburg, G.I. Maikov, D. Yanover, A. Brusilovski, J. Tilchin, and A. Sashchiuk, in Semiconductors and Semimetals, Quantum Efficiency in Complex Systems, Part II: From Molecular Aggregates to Organic Solar Cells, vol. 85, ed. by U. Würfel, M. Thorwart, E.R. Weber (Elsevier, San Diego, 2011), p. 181

    Google Scholar 

  11. P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, J. Phys. Chem. C 113, 13545 (2009)

    CAS  Google Scholar 

  12. L.X. Hung, P.N. Thang, H.V. Nong, N.H. Yen, V.D. Chinh, L.V. Vu, N.T.T. Hien, W.D. de Marcillac, P.N. Hong, N.T. Loan, C. Schwob, A. Maître, N.Q. Liem, P. Bénalloul, L. Coolen, and P.T. Nga, J. Electron. Mater. 45, 4425 (2016)

    CAS  Google Scholar 

  13. L.X. Hung, P.D. Bassène, P.N. Thang, N.T. Loan, W.D. de Marcillac, A.R. Dhawan, F. Feng, J.U. Esparza-Villa, N.T.T. Hien, N.Q. Liem, L. Coolen, and P.T. Nga, RSC Adv. 7, 47966 (2017)

    CAS  Google Scholar 

  14. M. Balkanski, R.F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983)

    CAS  Google Scholar 

  15. H.W. Nesbitt, G.M. Bancroft, and G.S. Henderson, Am. Mineral. 103, 966 (2018)

    Google Scholar 

  16. R. Beserman, C. Hirliman, M. Balkanski, and J. Chevallier, Solid State Commun. 20, 485 (1976)

    CAS  Google Scholar 

  17. K.-R. Zhu, M.-S. Zhang, Q. Chen, and Z. Yin, Phys. Lett. A 340, 220 (2005)

    CAS  Google Scholar 

  18. P. Kusch, H. Lange, M. Artemyev, and C. Thomsen, Solid State Commun. 151, 67 (2011)

    CAS  Google Scholar 

  19. V. Dzhagan, M.Y. Valakh, J. Kolny-Olesiak, I. Lokteva, and D.R.T. Zahn, Appl. Phys. Lett. 94, 243101 (2009)

    Google Scholar 

  20. M. Mohr and C. Thomsen, Nanotechnology 20, 115707 (2009)

    Google Scholar 

  21. A.G. Rolo and M.I. Vasilevskiy, J. Raman Spectrosc. 38, 618 (2007)

    CAS  Google Scholar 

  22. V.C. Stergiou, A.G. Kontos, and Y.S. Raptis, Phys. Rev. B 77, 235201 (2008)

    Google Scholar 

  23. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    CAS  Google Scholar 

  24. V.I. Korepanov and D.M. Sedlovets, Analyst 143, 2674 (2018)

    CAS  Google Scholar 

  25. J.Z. Wan, J.L. Brelinar, R. Leonelli, G. Zhao and J.T. Graham, Phys. Rev. B 48, 5197 (1993)

    CAS  Google Scholar 

  26. Y.P. Varshni, Physica 34, 149 (1967)

    CAS  Google Scholar 

  27. I. Yeo, J.D. Song, and J. Lee, Appl. Phys. Lett. 99, 151909 (2011)

    Google Scholar 

  28. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, 2005), p. 190

    Google Scholar 

  29. M. Singh, M. Goyal, and K. Devlal, J. Taibah Univ. Sci. 12, 470 (2018)

    Google Scholar 

  30. H. Asano and T. Omata, AIP Adv. 7, 045309 (2017)

    Google Scholar 

  31. Landolt-Börnstein, Numerical Data and Functional Relationship in Science and Technology. Group III (1982), p. 16

  32. K.P. O’Donnell and X. Chen, Appl. Phys. Lett. 58, 2924 (1991)

    Google Scholar 

  33. M.S. Gaponenko, A.A. Lutich, N.A. Tolstik, A.A. Onushchenko, A.M. Malyarevich, E.P. Petrov, and K.V. Yumashev, Phys. Rev. B 82, 125320 (2010)

    Google Scholar 

  34. S. Adachi, Handbook on Physical Properties of Semiconductors: II–VI Compound Semiconductors, vol. 3 (Kluwer, New York, 2004), p. 359

    Google Scholar 

  35. A.M. Jagtap, J. Khatei, and K.S.R. Koteswara Rao, Phys. Chem. Chem. Phys. 17, 27579 (2015)

    CAS  Google Scholar 

  36. A.M. Jagtap, A. Chatterjee, A. Banerjee, N.B. Pendyala, and K.S.R. Koteswara Rao, J. Phys. D Appl. Phys. 49, 135302 (2016)

    Google Scholar 

  37. A.M. Kelley, J. Phys. Chem. Lett. 1, 1296 (2010)

    CAS  Google Scholar 

  38. D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Phys. Rev. B 71, 235409 (2005)

    Google Scholar 

  39. S. Rudin, T.L. Reinecke, and B. Segal, Phys. Rev. B 42, 11218 (1990)

    CAS  Google Scholar 

  40. F. Gindele, K. Hild, W. Langbein, and U. Woggon, J. Lumin. 87–89, 381 (2000)

    Google Scholar 

  41. M. Funato, K. Omae, Y. Kawakami, S. Fujita, C. Bradford, A. Balocchi, K.A. Prior, and B.C. Cavenett, Phys. Rev. B 73, 245308 (2006)

    Google Scholar 

  42. M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, A.L. Efros, and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995)

    CAS  Google Scholar 

  43. T.G. Mack, L. Jethi, and P. Kambhampati, J. Phys. Chem. C 121, 28537 (2017)

    CAS  Google Scholar 

  44. D. Kushavah, P.K. Mohapatra, P. Ghosh, M. Singh, P. Vasa, D. Bahadur, and B.P. Singh, Mater. Res. Express 4, 075007 (2017)

    Google Scholar 

  45. J. Voigt, F. Spielgelberg, and M. Senoner, Phys. Status Solidi B 91, 189 (1979)

    CAS  Google Scholar 

  46. X. Wen, A. Sitt, P. Yu, Y.-R. Toh, and J. Tang, Phys. Chem. Chem. Phys. 14, 3505 (2012)

    CAS  Google Scholar 

  47. O. Schöps, N. Le Thomas, U. Woggon, and M.V. Artemyev, J. Phys. Chem. B 110, 2074 (2006)

    Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.03-2018.03. The authors also thank the National Key Laboratory for Electronic Materials and Devices (IMS) and Duy Tan University for giving facilities to cary out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Thuc Hien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, L.X., Nga, P.T., Dat, N.N. et al. Temperature Dependence of Raman and Photoluminescence Spectra of Ternary Alloyed CdSe0.3Te0.7 Quantum Dots. J. Electron. Mater. 49, 2568–2577 (2020). https://doi.org/10.1007/s11664-020-07961-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07961-x

Keywords

Navigation