Skip to main content
Log in

Influence of Aging Atmosphere on the Thermal Stability of Low-Temperature Rapidly Sintered Cu Nanoparticle Paste Joint

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Isothermal aging tests of low-temperature rapidly sintered Cu-Cu joints were conducted at 180°C for 72 h under air and vacuum atmospheres, respectively. Shear strength, micromorphology and elemental analysis of the joints before and after aging were characterized. The experimental results indicated that organics in nano-paste were not capable of sustainably inhibiting the oxidation of Cu nanoparticles under high-temperature and high-oxygen conditions. The shear strength degraded as low as 5.12 MPa after air aging, and a nanoporous and filamentous structure was formed due to the continuous growth of Cu oxides on the surface of the sintered nanoparticles. Nevertheless, the porosity of the as-sintered structure reduced with the formation of a large area interconnection microstructure under low-oxygen aging conditions, thereby the shear strength of the sintered joints notably improved up to 20.03 MPa after vacuum aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Qian, A.M. Gheitaghy, J. Fan, H. Tang, S. Bo, H. Ye, and G. Zhang, IEEE Access. 6, 12868 (2018).

    Article  Google Scholar 

  2. C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, and C. Raynaud, Mater. Sci. Eng. B 176, 283 (2011).

    Article  CAS  Google Scholar 

  3. V.R. Manikam, and C.K. Yew IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011).

    Article  CAS  Google Scholar 

  4. J.L. Hudgins, IEEE J. Emerg. Sel. Topics Power Electron. 1, 11 (2013).

    Article  Google Scholar 

  5. J. Zhang, Y. Huang, Z. Wang, and Y. Liu, J. Alloys Compd. 774, 939 (2019).

    Article  CAS  Google Scholar 

  6. J. Du, Y. Huang, C. Xiao, and Y. Liu, J. Mater. Sci. Technol. 34, 689 (2018).

    Article  CAS  Google Scholar 

  7. M. Willander, M. Friesel, Q.-U. Wahab, and B. Straumal, J. Mater. Sci. Mater. Electron. 17, 1 (2006).

    Article  CAS  Google Scholar 

  8. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014).

    Article  Google Scholar 

  9. T.J. Flack, B.N. Pushpakaran, and S.B. Bayne, J. Electron. Mater. 45, 2673 (2016).

    Article  CAS  Google Scholar 

  10. A. Marzoughi, R. Burgos, and D. Boroyevich, in Proc. IEEE Energy Convers. Congr. Expo. vol 1, 2016.

  11. H. Matsunami, Microelectron. Eng. 83, 2 (2006).

    Article  CAS  Google Scholar 

  12. L. Ma, Z. Yong, S. Liu, G. Fu, and X. Wang, J. Appl. Phys. 113, 4 (2013).

    Google Scholar 

  13. K.N. Chiang, C.C. Lee, C.L. Chang, and K.M. Chen, Appl. Phys. Lett. 88, 5451 (2006).

    Google Scholar 

  14. H. Yu, L. Li, and Y. Zhang, Scr. Mater. 66, 931 (2012).

    Article  CAS  Google Scholar 

  15. M.-H. Yu, S.-J. Joo, and H.-S. Kim, Nanotechnology 28, 20 (2017).

    CAS  Google Scholar 

  16. S. Wang, M. Li, H. Ji, and C. Wang, Scr. Mater. 69, 789 (2013).

    Article  CAS  Google Scholar 

  17. J. Li, X. Li, L. Wang, Y.-H. Mei, and G.-Q. Lu, Mater. Des. 140, 64 (2018).

    Article  Google Scholar 

  18. Y. Zuo, J. Shen, H. Xu, and R. Gao, Mater. Lett. 199, 13 (2017).

    Article  CAS  Google Scholar 

  19. Y. Mou, Y. Peng, Y. Zhang, H. Cheng, and M. Chen, Mater. Lett. 227, 179 (2018).

    Article  CAS  Google Scholar 

  20. J. Li, X. Yu, T. Shi, C. Cheng, J. Fan, S. Cheng, G. Liao, and Z. Tang, Nanoscale Res. Lett. 12, 255 (2017).

    Article  Google Scholar 

  21. J.J. Li, C.L. Cheng, T.L. Shi, J.H. Fan, X. Yu, S.Y. Cheng, G.L. Liao, and Z.R. Tang, Mater. Lett. 184, 193 (2016).

    Article  CAS  Google Scholar 

  22. X. Liu, S. Zhou, and H. Nishikawa, J. Mater. Sci. Mater. Electron. 28, 12606 (2017).

    Article  CAS  Google Scholar 

  23. I. Kim, Y. Kim, K. Woo, E.H. Ryu, K.Y. Yon, G. Cao, and J. Moon, RSC Adv. 3, 15169 (2013).

    Article  CAS  Google Scholar 

  24. J. Liu, Y. Mou, Y. Peng, Q. Sun, and M. Chen, Mater. Lett. 248, 78 (2019).

    Article  CAS  Google Scholar 

  25. Y. Zuo, J. Shen, Y. Hu, and R. Gao, J. Mater. Process. Technol. 253, 27 (2018).

    Article  CAS  Google Scholar 

  26. K. Uehara and M. Sakurai, J. Mater. Process. Technol. 127, 178 (2002).

    Article  Google Scholar 

  27. D.L. Cocke, R. Schennach, M.A. Hossain, D.E. Mencer, H. Mcwhinney, J.R. Parga, M. Kesmez, J.A.G. Gomes, and M.Y.A. Mollah, Vacuum 79, 71 (2005).

    Article  CAS  Google Scholar 

  28. A. Yabuki and S. Tanaka, Mater. Res. Bull. 46, 2323 (2011).

    Article  CAS  Google Scholar 

  29. V.V. Prisedsky and V.M. Vinogradov, J. Solid State Chem. 177, 4258 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by a Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Shen, J., Deng, J. et al. Influence of Aging Atmosphere on the Thermal Stability of Low-Temperature Rapidly Sintered Cu Nanoparticle Paste Joint. J. Electron. Mater. 49, 2669–2676 (2020). https://doi.org/10.1007/s11664-020-07951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07951-z

Keywords

Navigation