Skip to main content

Advertisement

Log in

Enhanced Thermoelectric Performance of Polythiophene/Carbon Nanotube-Based Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Binary polythiophene/multiwalled carbon nanotube (PTh/MWCNT) and ternary PTh/SnSe/MWCNT composites with different weight proportions have been successfully prepared by solution mixing, ultrasonic dispersion, and mechanical ball milling. The morphology, microstructure, and thermal stability of all the samples were studied by x-ray diffraction analysis, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis. The electrical conductivity of both the binary PTh/MWCNT and ternary PTh/SnSe/MWCNT composites was increased by nearly five orders of magnitude compared with pure PTh across the whole measurement temperature range. However, the Seebeck coefficient at room temperature decreased sharply from \(453.4\,\mu {{\text {V K}}}^{-1}\) for pure PTh to \(11{-}20\,\mu {{\text {V K}}}^{-1}\) for the composites. The thermal conductivity of all the composites was lower than 0.6 \({{\text {W m}}}^{-1}\,{{\text {K}}}^{-1}\), being slightly higher than that of pure PTh. As a result, the ZT values of all the composites were much higher than that of pure PTh (\(0.032 \times 10^{-4}\)), reaching \(1.3 \times 10^{-4}\) and \(1.62 \times 10^{-4}\) at room temperature for the binary PTh/MWCNT and ternary PTh/SnSe/MWCNT composites, respectively. The maximum ZT value reached \(3.05 \times 10^{-4}\) at 433 K for the binary PTh/MWCNT composite with MWCNT content of 40 wt.%. These results suggest that the thermoelectric performance of PTh/MWCNT composites can be greatly enhanced compared with pure PTh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. He, F. Qiu, and Z. Lin, Energy Environ. Sci. 6, 1352 (2013).

    Google Scholar 

  2. B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, and R.A. Segalman, Nat. Rev. Mater. 1, 16050 (2016).

    CAS  Google Scholar 

  3. H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, and J. Ouyang, Macromol. Rapid Commun. 39, 1700727 (2018).

    Google Scholar 

  4. B.T. McGrail, A. Sehirlioglu, and E. Pentzer, Angew. Chem. Int. Ed. 54, 1710 (2015).

    CAS  Google Scholar 

  5. Y. Li, Y. Du, Y. Dou, K. Cai, and J. Xu, Synth. Met. 226, 119 (2017).

    CAS  Google Scholar 

  6. G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).

    CAS  Google Scholar 

  7. R. Kroon, D.A. Mengistie, D. Kiefer, J. Hynynen, J.D. Ryan, L. Yu, and C. Muller, Chem. Soc. Rev. 45, 6147 (2016).

    CAS  Google Scholar 

  8. N. Toshima, Synth. Met. 225, 3–21 (2017).

    CAS  Google Scholar 

  9. A.M. Glaudell, J.E. Cochran, S.N. Patel, and M.L. Chabinyc, Adv. Energy Mater. 5, 1401072 (2015).

    Google Scholar 

  10. J. Zhao, D. Tan, and G. Chen, J. Mater. Chem. C 5, 47 (2017).

    CAS  Google Scholar 

  11. X. Hu, G. Chen, X. Wang, and H. Wang, J. Mater. Chem. A 3, 20896 (2015).

    CAS  Google Scholar 

  12. H. Ju, D. Park, and J. Kim, Chem. Eng. J 356, 950 (2019).

    CAS  Google Scholar 

  13. Y. Li, F. Li, J. Dong, Z. Ge, F. Kang, J. He, H. Du, B. Li, and J.-F. Li, J. Mater. Chem. C 4, 2047 (2016).

    CAS  Google Scholar 

  14. M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, and F. Qiu, Energy Environ. Sci. 5, 8351 (2012).

    CAS  Google Scholar 

  15. C. Chang, M. Wu, D. He, Y. Pei, C.F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.F. Li, J. He, and L.D. Zhao, Science 360, 778 (2018).

    CAS  Google Scholar 

  16. T. Zhang, K. Zhou, and Z.Q. Chen, Phys. Status Solidi B 252, 2179 (2015).

    CAS  Google Scholar 

  17. H.F. He, X.F. Li, Z.Q. Chen, Y. Zheng, D.W. Yang, and X.F. Tang, J. Phys. Chem. C 118, 22389 (2014).

    CAS  Google Scholar 

  18. X. Zhang and L.-D. Zhao, J. Materiomics 1, 92 (2015).

    Google Scholar 

  19. H. Wang and C. Yu, Joule 3, 53 (2019).

    CAS  Google Scholar 

  20. Y. Du, S.Z. Shen, W.D. Yang, K.F. Cai, and P.S. Casey, Synth. Met. 162, 375 (2012).

    CAS  Google Scholar 

  21. C. Lai, J. Li, C. Pan, L. Wang, and X. Bai, J. Electron. Mater. 45, 5246 (2016).

    CAS  Google Scholar 

  22. K. Hiraishi, A. Masuhara, H. Nakanishi, H. Oikawa, and Y. Shinohara, Jpn. J. Appl. Phys. 48, 071501 (2009).

    Google Scholar 

  23. J. Liu, J. Sun, and L. Gao, Nanoscale 3, 3616–3619 (2011).

    CAS  Google Scholar 

  24. L. Fan and X. Xu, RSC Adv. 5, 78104 (2015).

    CAS  Google Scholar 

  25. M. Famili, I.M. Grace, Q. Al-Galiby, H. Sadeghi, and C.J. Lambert, Adv. Funct. Mater. 28, 1703135 (2018).

    Google Scholar 

  26. B. Zhang, K. Wang, D. Li, and X. Cui, RSC Adv. 5, 33885 (2015).

    CAS  Google Scholar 

  27. G.-H. Kim, J. Kim, and K.P. Pipe, Appl. Phys. Lett. 108, 093301 (2016).

    Google Scholar 

  28. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).

    CAS  Google Scholar 

  29. K. Wei, T. Stedman, Z.-H. Ge, L.M. Woods, and G.S. Nolas, Appl. Phys. Lett. 107, 153301 (2015).

    Google Scholar 

  30. M.R. Karim, C.J. Lee, and M.S. Lee, J. Polym. Sci. A Polym. Chem. 44, 5283 (2006).

    CAS  Google Scholar 

  31. W. Zheng, P. Bi, H. Kang, W. Wei, F. Liu, J. Shi, L. Peng, Z. Wang, and R. Xiong, Appl. Phys. Lett. 105, 023901 (2014).

    Google Scholar 

  32. H. Wang, J.-H. Hsu, S.-I. Yi, S.L. Kim, K. Choi, G. Yang, and C. Yu, Adv. Mater. 27, 6855 (2015).

    CAS  Google Scholar 

  33. H. Wang, S.-I. Yi, X. Pu, and C. Yu, ACS Appl. Mater. Interfaces 7, 9589 (2015).

    CAS  Google Scholar 

  34. L. Liang, C. Gao, G. Chen, and C.-Y. Guo, J. Mater. Chem. C 4, 526 (2016).

    CAS  Google Scholar 

  35. F. Erden, H. Li, X. Wang, F. Wang, and C. He, Phys. Chem. Chem. Phys. 20, 9411 (2018).

    CAS  Google Scholar 

  36. T.P. Kaloni, P.K. Giesbrecht, G. Schreckenbach, and M.S. Freund, Chem. Mater. 29, 10248 (2017).

    CAS  Google Scholar 

  37. G. Han, S.R. Popuri, H.F. Greer, J.W. Bos, W. Zhou, A.R. Knox, A. Montecucco, J. Siviter, E.A. Man, M. Macauley, D.J. Paul, W.G. Li, M.C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T.K. Mallick, and D.H. Gregory, Angew. Chem. Int. Ed. 55, 6433 (2016).

    CAS  Google Scholar 

  38. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, and C. Wolverton, Nature 508, 373 (2014).

    CAS  Google Scholar 

  39. L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Science 351, 141 (2016).

    CAS  Google Scholar 

  40. X.G. Li, J. Li, Q.K. Meng, and M.R. Huang, J. Phys. Chem. B 113, 9718 (2009).

    CAS  Google Scholar 

  41. X. She, X. Su, H. Xie, J. Fu, Y. Yan, W. Liu, P.F. Poudeu Poudeu, and X. Tang, ACS Appl. Mater. Interfaces 10, 25519 (2018).

    CAS  Google Scholar 

  42. M.R. Karim, K.T. Lim, C.J. Lee, and M.S. Lee, Synth. Met. 157, 1008 (2007).

    CAS  Google Scholar 

  43. M.-D. Lu and S.-M. Yang, Synth. Met. 154, 73 (2005).

    CAS  Google Scholar 

  44. X.G. Li, J. Li, and M.R. Huang, Chemistry 15, 6446 (2009).

    CAS  Google Scholar 

  45. A. Agarwal, S.H. Chaki, and D. Lakshminarayana, Mater. Lett. 61, 5188 (2007).

    CAS  Google Scholar 

  46. S. Mallakpour, A. Abdolmaleki, and S. Borandeh, Prog. Org. Coat. 77, 1966 (2004).

    Google Scholar 

  47. D. Wang, L. Wang, W. Wang, X. Bai, and J. Li, in Third International Conference on Smart Materials and Nanotechnology in Engineering (2012).

  48. L. Wang, X. Jia, D. Wang, G. Zhu, and J. Li, Synth. Met. 181, 79 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575131, 11775163, and 11875208, and the Natural Science Foundation of Hubei Province under Grant No. 2016CFA080.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Q. Chen or N. Qi.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X.Y., Zhang, Q.K., Deng, S.P. et al. Enhanced Thermoelectric Performance of Polythiophene/Carbon Nanotube-Based Composites. J. Electron. Mater. 49, 2371–2380 (2020). https://doi.org/10.1007/s11664-019-07935-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07935-8

Keywords

Navigation