Skip to main content
Log in

Role of Si Incorporation on the Transparent Conducting Properties of In2O3 Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thin films of indium oxide (In2O3) incorporated with Si ion impurities were prepared on glass substrates by a vacuum evaporation technique. The influence of the Si inclusion on the structural and optical properties of the host In2O3 films was analytically studied by the Rietveld refinement method. It was observed that the insertion of Si ion-species into In2O3 lattice did not change its bixbyite phase. However, a gradual deterioration of crystalline structure with increasing of Si inclusion in the films sample was observed. The optical measurements revealed that the band gap of host In2O3 films blue-shifted by the inclusion of Si ions, which was ascribed to the Moss-Burstein effect. The transparent conducting properties of the films (conductivity, carrier mobility and concentration) were extracted from optical measurements, and compared with the known conduction parameters measured by a direct electrical method. The electrical conductivity, carrier concentration and optical transparency of host In2O3 films were improved with Si incorporation for concentrations less than ∼ 16 at.%. However, Si-incorporation decreased the carrier mobility. For Si inclusion of ∼ 16 at.%, In2O3:Si film shows a resistivity of 3.73 × 10−3 Ω cm and an optical transparency of ∼ 90%, which are acceptable values for the fabrication of different types of photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Lee and C.S. Huang, Mater. Sci. Eng. B 22, 233 (1994).

    Article  Google Scholar 

  2. A. Sudha, T.K. Maity, and S.L. Sharma, Mater. Lett. 164, 372 (2016).

    Article  CAS  Google Scholar 

  3. G.I. Mihaela Girtan, G. Rusu, G. Rusu, and S. Gurlui, Appl. Surf. Sci. 162, 492 (2000).

    Article  Google Scholar 

  4. T. Minami and T. Miyata, Thin Solid Films 517, 1474 (2008).

    Article  CAS  Google Scholar 

  5. S. Kaleemulla, A. Sivasankar Reddy, S. Uthanna, and P. Sreedhara Reddy, J. Alloys Compd. 479, 589 (2009).

    Article  CAS  Google Scholar 

  6. SZh Karazhanov, P. Ravindran, P. Vajeeston, A. Ulyashin, T.G. Finstad, and H. Fjellvag, Phys. Rev. B 76, 075129 (2007).

    Article  Google Scholar 

  7. M. Marezio, Acta Crystallogr. 20, 723 (1966).

    Article  CAS  Google Scholar 

  8. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, and P.K. Kahol, Mater. Chem. Phys. 112, 136 (2008).

    Article  CAS  Google Scholar 

  9. X. Sun, K. M, C. Li, and W. Li, J. Alloys Compd. 764, 861 (2018).

    Article  CAS  Google Scholar 

  10. S. Parthiban, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E. Fortunato, and R. Ganesan, Sol. Energy Mater. Sol. Cells 93, 92 (2009).

    Article  CAS  Google Scholar 

  11. Q. Zhang, X. Li, and G. Li, Thin Solid Films 517, 613 (2008).

    Article  CAS  Google Scholar 

  12. M.-M. Bagheri-Mohagheghi and M. Shokooh-Saremi, Semicond. Sci. Technol. 18, 97 (2003).

    Article  CAS  Google Scholar 

  13. F. Ye, X.-M. Cai, X. Zhong, X.-Q. Tian, S.-Y. Jing, L.-B. Huang, V.A.L. Roy, D.-P. Zhang, P. Fan, J.-T. Luo, Z.-H. Zheng, and G.-X. Liang, Thin Solid Films 556, 44 (2014).

    Article  CAS  Google Scholar 

  14. H.-M. Lee and H.-K. Kim, J. Nanosci. Nanotechnol. 15, 7748 (2015).

    Article  CAS  Google Scholar 

  15. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  16. A.K. Das, P. Misra, and L.M. Kukreja, J. Physics D: Appl. Phys. 42, 165405 (2009).

    Article  Google Scholar 

  17. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (New York: Prentice Hall, 2001), p. 102.

    Google Scholar 

  18. J. Tauc and F. Abelesn, Optical Properties of Solids (Dordrecht: North Holland, 1969).

    Google Scholar 

  19. P.D.C. King, T.D. Veal, F. Fuchs, ChY Wang, D.J. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, R.G. Egdell, F. Bechstedt, and C.F. McConville, Phys. Rev. B 79, 205211 (2009).

    Article  Google Scholar 

  20. A. Sudha, S.L. Sharma, and A.N. Gupta, Sens. Actuators, A 285, 378 (2019).

    Article  CAS  Google Scholar 

  21. P.J.L. Herve and L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994).

    Article  CAS  Google Scholar 

  22. O. Medenbach, T. Siritanon, M.A. Subramanian, R.D. Shannon, R.X. Fischer, and G.R. Rossman, Mater. Res. Bull. 48, 2240 (2013).

    Article  CAS  Google Scholar 

  23. S. Repp and E. Erdem, Spectrochim. Acta, Part A 152, 637 (2016).

    Article  CAS  Google Scholar 

  24. J.I. Pankove, Optical Processes in Semiconductors (NY: Dover, 1975), p. 36.

    Google Scholar 

  25. F. Fuchs and F. Bechstedt, Phys. Rev. B 77, 155107 (2008).

    Article  Google Scholar 

  26. N. Preissler, O. Bierwagen, A.T. Ramu, and J.S. Speck, Phys. Rev. B 88, 085305 (2013).

    Article  Google Scholar 

  27. H.L. Hartnagel, A.L. Dawar, A.K. Jain, and C. Jagadish, Semiconductiong, Transparent Thin Films, Institute of Publishing Bristol and Philadelphia, UK (London: Institute of Physics, 1995), p. 248.

    Google Scholar 

  28. M. Nistor, F. Gherendia, and J. Perrièreb, Mater. Sci. Semicond. Process. 88, 45 (2018).

    Article  CAS  Google Scholar 

  29. C.-C. Yu, K.-S. Yang, H. Chang, J.-S. Lee, J.-Y. Lai, P.-Y. Chuang, J.-C. Andrew Huang, A.-C. Sun, F.-C. Wu, and H.-L. Cheng, Vacuum 102, 63 (2014).

    Article  CAS  Google Scholar 

  30. A.E. Hassanien, H.M. Hashem, G. Kamel, S. Soltan, A.M. Moustafa, M. Hammam, and A.A. Ramadan, Int. J. Thin Film. Sci. Tec. 5, 55 (2016).

    Google Scholar 

  31. S. Kaleemulla, A. Sivasankar Reddy, S. Uthanna, and P. Sreedhara Reddy, Optoelectron. Adv. Mat. 2, 782 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dakhel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Role of Si Incorporation on the Transparent Conducting Properties of In2O3 Thin Films. J. Electron. Mater. 49, 2296–2301 (2020). https://doi.org/10.1007/s11664-019-07931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07931-y

Keywords

Navigation