Skip to main content
Log in

Electromagnetic Scattering Properties of MWCNTs/Graphene Doped Epoxy Layered with PVC Nanofiber/E-Glass Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, composites composed of glass fiber reinforced-epoxy laminates interleaved with electrospun polyvinylchloride (PVC) nano-fibres were designed for radar absorption investigations. The laminated composites which were produced in special molds were obtained by placing woven glass fibers between each of PVC nanofiber mats, and the composites were produced in three different forms as pure, multi-walled carbon nanotubes doped and graphene doped. The morphologies of the PVC nanofiber mats were analyzed by scanning electron microscope. The radar absorption efficiencies of the composites in the individual and different combinations were measured in the 3–8 GHz frequency band. Experimental results show that the produced graphene-added composite material has improvable microwave absorption effect at several points in 3–8 GHz band to provide excellent absorption in future studies. The graphene doped structure was found to have a certain absorption characteristic up to 33.82% at a constant frequency. Besides, various strong absorption frequency points have been obtained in the related frequency range. The cascaded graphene doped composite layers can provide broadband absorption for stealth technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Hag-Elsafi, S. Alampalli, and J. Kunin, Compos. Struct. 52, 453 (2001).

    Google Scholar 

  2. M. Hojo, S. Matsuda, M. Tanaka, S. Ochiai, and A. Murakami, Compos. Sci. Technol. 66, 665 (2006).

    CAS  Google Scholar 

  3. T. Yang, C.H. Wang, J. Zhang, S. He, and A.P. Mouritz, Compos. Sci. Technol. 72, 1396 (2012).

    CAS  Google Scholar 

  4. C. Marieta, E. Schulz, L. Irusta, N. Gabilondo, A. Tercjak, and I. Mondragon, Compos Sci Technol 65, 2189 (2005).

    CAS  Google Scholar 

  5. A. Zucchelli, M.L. Focarete, C. Gualandi, and S. Ramakrishna, Polym. Adv. Technol. 22, 339 (2011).

    CAS  Google Scholar 

  6. H. Saghafi, A. Zucchelli, R. Palazzetti, and G. Minak, Compos. Struct. 109, 41 (2014).

    Google Scholar 

  7. R. Palazzetti, J. Compos. Mater. 49, 3407 (2015).

    Google Scholar 

  8. N. Bhardwaj and S.C. Kundu, Biotechnol. Adv. 28, 325 (2010).

    CAS  Google Scholar 

  9. C.J. Thompson, G.G. Chase, A.L. Yarin, and D.H. Reneker, Polymer (Guildf) 48, 6913 (2007).

    CAS  Google Scholar 

  10. C. Carrizales, S. Pelfrey, R. Rincon, T.M. Eubanks, A. Kuang, M.J. McClure, G.L. Bowlin, and J. Macossay, Polym. Adv. Technol. 19, 124 (2008).

    CAS  Google Scholar 

  11. K. Behler, M. Havel, and Y. Gogotsi, Polymer (Guildf) 48, 6617 (2007).

    CAS  Google Scholar 

  12. M.Z. Elsabee, H.F. Naguib, and R.E. Morsi, Mater. Sci. Eng. C 32, 1711 (2012).

    CAS  Google Scholar 

  13. R. Palazzetti, A. Zucchelli, and I. Trendafilova, Compos. Struct. 106, 661 (2013).

    Google Scholar 

  14. E.T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    CAS  Google Scholar 

  15. K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, and L. Mao, Anal. Sci. 21, 1383 (2005).

    CAS  Google Scholar 

  16. D.A. Areshkin, D. Gunlycke, and C.T. White, Nano Lett. 7, 204 (2007).

    CAS  Google Scholar 

  17. G.L. Zhao, F.G.K. Li, Z. Wang, and M. Jahan, Mater. Sci. Eng. B 224, 61 (2017).

    CAS  Google Scholar 

  18. Y. Ando, X. Zhao, H. Shimoyama, G. Sakai, and K. Kaneto, Int. J. Inorg. Mater. 1, 77 (1999).

    CAS  Google Scholar 

  19. B. Wei, R. Vajtai, and P. Ajayan, Appl. Phys. Lett. 79, 1172 (2001).

    CAS  Google Scholar 

  20. S. Iijima, Nature 354, 56 (1991).

    CAS  Google Scholar 

  21. H. Dai, Acc. Chem. Res. 35, 1035 (2002).

    CAS  Google Scholar 

  22. S. Arepalli, J. Nanosci. Nanotechnol. 4, 317 (2004).

    CAS  Google Scholar 

  23. Ç. Öncel and Y. Yürüm, Fuller Nanotub Carbon Nonstruct 14, 17 (2006).

    Google Scholar 

  24. Y. Ando and X. Zhao, New Diamond Front. Carbon Technol. 16, 123 (2006).

    CAS  Google Scholar 

  25. F. Danafar, A. Fakhrùl-Razi, M.A.M. Salleh, and D.R.A. Biak, Chem. Eng. J. 155, 37 (2009).

    CAS  Google Scholar 

  26. M. Kumar and Y. Ando, J. Nanosci. Nanotechnol. 10, 3739 (2010).

    CAS  Google Scholar 

  27. J.P. Tessonnier and D.S. Su, Chemsuschem 4, 824 (2011).

    CAS  Google Scholar 

  28. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, and R. Kizek, J. Mater. Chem. 21, 15872 (2011).

    CAS  Google Scholar 

  29. C. Journet, M. Picher, and V. Jourdain, Nanotechnology 23, 142001 (2012).

    Google Scholar 

  30. M. José-Yacamán, M. Miki-Yoshida, L. Rendon, and J. Santiesteban, Appl. Phys. Lett. 62, 202 (1993).

    Google Scholar 

  31. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Google Scholar 

  32. Y.J. Zhang, P.Y. He, Y.X. Zhang, and H. Chen, Chem. Eng. J. 334, 2459 (2018).

    CAS  Google Scholar 

  33. D. Lee, I. Choi, and D.G. Lee, Compos. Struct. 119, 107 (2015).

    Google Scholar 

  34. R.A. Stonier, SAMPE J. 27, 9 (1991).

    Google Scholar 

  35. K.J. Vinoy, Radar Absorbing Materials (Boston: Kluwer Academic, 1996). pp. 1–16, 135–136.

  36. S. Seo, W.S. Chin, and D.G. Lee, Compos. Struct. 66, 533 (2004).

    Google Scholar 

  37. W. Fan, L. Yuan, N. D’Souz, B. Xuc, W. Dang, L. Xue, J. Li, C. Tonoy, and R. Sun, Polym. Test. 69, 71 (2018).

    CAS  Google Scholar 

  38. Y. Pang, Y. Li, J. Wang, M. Yan, H. Chen, L. Sun, Z. Xu, and S. Qu, Compos. Sci. Technol. 158, 19 (2018).

    CAS  Google Scholar 

  39. P. Wang, L. Cheng, Y. Zhang, W. Yuan, H. Pan, and H. Wu, Compos. A 104, 68 (2018).

    CAS  Google Scholar 

  40. Y. Wei, H. Liu, S. Liu, M. Zhang, Y. Shi, J. Zhang, L. Zhang, and C. Gong, Compos. Commun. 9, 70 (2018).

    Google Scholar 

  41. Yun Wei, Lei Zhang, Chunhong Gong, Shengchao Liu, Miaomiao Zhang, Yupeng Shi, and Jingwei Zhang, J. Alloy. Compd. 735, 1488 (2018).

    CAS  Google Scholar 

  42. Yun Wei, Yupeng Shi, Xuefeng Zhang, Zhiyang Jiang, Yahong Zhang, Lei Zhang, Jingwei Zhang, and Chunhong Gong, J. Mater. Sci. Mater. Electron. 30, 14519 (2019).

    CAS  Google Scholar 

  43. Z. Li, Q.F. Yin, W.W. Hu, J.W. Zhang, J.H. Guo, J.P. Chen, T.H. Sun, C.Q. Du, J. Shu, L.G. Yu, and J.W. Zhang, J. Mater. Sci. 54, 9025 (2019).

    CAS  Google Scholar 

  44. Vildan Ozkan, Ahmet Yapici, Muharrem Karaaslan, and Oguzhan Akgol, Fresenius Environ. Bull. 28, 2238 (2019).

    CAS  Google Scholar 

  45. Lingxi Huang, Yuping Duan, Xuhao Dai, Yuansong Zeng, Guojia Ma, Yi Liu, Shaohua Gao, and Weiping Zhang, Small 15, 1902730 (2019).

    Google Scholar 

  46. Y.H. Li, F.X. Qin, L. Quan, H.J. Wei, Y. Luo, H. Wang, and H.X. Peng, Carbon 153, 447 (2019).

    CAS  Google Scholar 

  47. Y. Wei, Y. Shi, Z. Jiang, X. Zhang, H. Chen, Y. Zhang, J. Zhang, and C. Gong, J. Alloy. Compd. 810, 151950 (2019).

    CAS  Google Scholar 

  48. F. Dincer, O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, Progress Electromag Res 144, 93 (2014).

    Google Scholar 

  49. C. Sabah, F. Dincer, M. Karaaslan, E. Unal, and O. Akgol, Radio Sci 49, 306 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muharrem Karaaslan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkan, V., Yapici, A., Karaaslan, M. et al. Electromagnetic Scattering Properties of MWCNTs/Graphene Doped Epoxy Layered with PVC Nanofiber/E-Glass Composites. J. Electron. Mater. 49, 2249–2256 (2020). https://doi.org/10.1007/s11664-019-07921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07921-0

Keywords

Navigation