Skip to main content

Highly Conductive Graphene Electronics by Inkjet Printing

Abstract

Graphene is currently emerging as an alternative to traditional conductive materials, such as copper and silver because of its excellent electrical conductivity and earth's carbon abundance. Graphene can be applied in many different electronic fields with different manufacturing methods to meet their specific requirements, which promote the development of advanced manufacturing technology in graphene electrical applications. Inkjet printing, as an environmentally friendly, low-cost and simple-to-operate advanced manufacturing method, has broad development prospects especially in the field of flexible electronics. In this review, several factors affecting the electrical conduction property of graphene applications in the inkjet-printed graphene process are listed as follows: the preparation method of ink, material and treatment of substrate, thickness of print, and annealing, especially whether a coffee ring is produced. In addition, this paper also cites some examples of inkjet-printed graphene in electrical conductivity. In order to continuously improve the procedure designs of graphene electronics fabrication, more accurate relationships between electrical conductivity of graphene and these parameters can be built. Based on the excellent prospect of inkjet printing technology in the field of conductive electronics, there will be some further research about the perfect implementation of graphene’s electrical conductivity.

Graphic Abstract

References

  1. Z. Fan, T. Wei, G. Luo, and F. Wei, J. Mater. Sci. 40, 18 (2005).

    Google Scholar 

  2. A. Denneulin, J. Bras, A. Blayo, B. Khelifi, F.R. Dherbey, and C. Neuman, Nanotechnology 20, 38 (2009).

    Google Scholar 

  3. P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci, S. Pisana, T. Hasan, A.J. Flewitt, J. Robertson, and G.W. Hsieh, J. Appl. Phys. 102, 4 (2007).

    Google Scholar 

  4. W. Tong, J. Ruan, Z. Fan, G. Luo, and W. Fei, Carbon 45, 13 (2007).

    Google Scholar 

  5. Nat. Nanotechnol. 5, 755 (2010). https://doi.org/10.1038/nnano.2010.224.

  6. D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, and J.N. Coleman, J. Mater. Chem. C 2, 5 (2013). https://doi.org/10.1039/C3TC31993H.

    Article  Google Scholar 

  7. J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, and M. Östling, Carbon 50, 8 (2012). https://doi.org/10.1016/j.carbon.2012.03.011.

    CAS  Article  Google Scholar 

  8. J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, and M. Östling, Adv. Mater. 25, 29 (2013). https://doi.org/10.1002/adma.201300361.

    CAS  Article  Google Scholar 

  9. J. Li, M.C. Lemme, and M. Östling, ChemPhysChem 15, 16 (2014).

    Google Scholar 

  10. J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, and M. Östling, Adv. Funct. Mater. 24, 6524 (2014). https://doi.org/10.1002/adfm.201400984.

    CAS  Article  Google Scholar 

  11. F. Bonaccorso, A. Bartolotta, J.N. Coleman, and C. Backes, Adv. Mater. 28, 29 (2016).

    Google Scholar 

  12. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, and P. Avouris, Science 327, 5966 (2010). https://doi.org/10.1126/science.1184289.

    CAS  Article  Google Scholar 

  13. T. Fujita, M.B.A. Jalil, and S.G. Tan, Appl. Phys. Lett. 97, 4 (2010). https://doi.org/10.1063/1.3473725.

    CAS  Article  Google Scholar 

  14. K.Y. Shin, J.Y. Hong, and J. Jang, Chem. Commun. 47, 30 (2011). https://doi.org/10.1039/c1cc12913a.

    CAS  Article  Google Scholar 

  15. W. Jiang, D. Niu, H. Liu, C. Wang, T. Zhao, L. Yin, Y. Shi, B. Chen, Y. Ding, and B. Lu, Adv. Funct. Mater. 24, 48 (2014). https://doi.org/10.1002/adfm.201402070.

    CAS  Article  Google Scholar 

  16. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P. Paul, D. Chu, and A.C. Ferrari, ACS Nano 6, 4 (2012).

    Google Scholar 

  17. T. Low and F. Guinea, Nano Lett. 10, 9 (2010).

    Google Scholar 

  18. V.V. Cheianov, V. Fal’ko, and B.L. Altshuler, Science 315, 5816 (2007).

    Google Scholar 

  19. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 11 (2009). https://doi.org/10.1142/9789814287005_0002.

    Article  Google Scholar 

  20. X. Sun, H. Sun, H. Li, and H. Peng, Adv. Mater. 25, 37 (2013). https://doi.org/10.1002/adma.201301926.

    CAS  Article  Google Scholar 

  21. S. Goenka, V. Sant, and S. Sant, J. Control. Release 173, 1 (2014).

    Google Scholar 

  22. A.K. Geim, Science 324, 5934 (2009).

    Google Scholar 

  23. M.S. Artiles, C.S. Rout, and T.S. Fisher, Adv. Drug Deliv. Rev. 63, 14 (2011).

    Google Scholar 

  24. P. Nguyen and V. Berry, J. Phys. Chem. Lett. 3, 8 (2012).

    Google Scholar 

  25. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 10 (2008). https://doi.org/10.1021/nl802558y.

    CAS  Article  Google Scholar 

  26. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J. Maan, G.S. Boebinger, P. Kim, and A.K. Geim, Science 315, 5817 (2007).

    Google Scholar 

  27. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano Lett. 9, 1 (2009).

    Google Scholar 

  28. X. Zhao, B. Song, W. Fan, Y. Zhang, and Y. Shi, J. Alloys Compd. 665, 271 (2016). https://doi.org/10.1016/j.jallcom.2015.12.126.

    CAS  Article  Google Scholar 

  29. D. Zhu and M. Wu, J. Electron. Mater. 47, 9 (2018).

    Google Scholar 

  30. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Minqo, R.S. Ruoff, and L. Shi, Science 328, 5975 (2010).

    Google Scholar 

  31. S.K. Vashist and J.H.T. Luong, Carbon 84, 519 (2015). https://doi.org/10.1016/j.carbon.2014.12.052.

    CAS  Article  Google Scholar 

  32. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari, Mater. Today 15, 12 (2012).

    Google Scholar 

  33. M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 5 (2013).

    Google Scholar 

  34. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and Z. Hua, Nat. Chem. 5, 4 (2013).

    Google Scholar 

  35. A. Nagashima, Surf. Sci. Lett. 291, 93 (1993).

    CAS  Google Scholar 

  36. T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, and G. Comsa, Surf. Sci. 264, 3 (1992).

    Google Scholar 

  37. C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, J. Phys. Chem. B 108, 52 (2004).

    Google Scholar 

  38. I. Forbeaux, J.M. Themlin, and J.M. Debever, Phys. Rev. B 58, 24 (1998).

    Google Scholar 

  39. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. Marchenkov, E. Conrad, P. First, and W. Heer, Science 312, 5777 (2006).

    Google Scholar 

  40. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 5789 (2006).

    Google Scholar 

  41. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 5696 (2004).

    Google Scholar 

  42. A. Kamyshny and S. Magdassi, Small 10, 17 (2014).

    Google Scholar 

  43. Z. Cui, Printed Electronics Materials Technologies and Applications (Hoboken: Wiley, 2016), p. 450.

    Google Scholar 

  44. J. Gilot, M.M. Wienk, and R.A.J. Janssen, Org. Electron. 12, 4 (2011).

    Google Scholar 

  45. A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, Sol. Energy Mater. Sol. Cells 95, 2 (2011).

    Google Scholar 

  46. J. Ajuria, I. Etxebarria, W. Cambarau, U. Muñecas, R. Tena-Zaera, J.C. Jimeno, and R. Pacios, Energy Environ. Sci. 4, 2 (2011).

    Google Scholar 

  47. H. Liu, Y. Liu, and D. Zhu, J. Mater. Chem. 21, 10 (2011). https://doi.org/10.1039/C0JM02922J.

    CAS  Article  Google Scholar 

  48. A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski, and A.A. Bol, ACS Nano 4, 7 (2010).

    Google Scholar 

  49. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 3 (2008).

    Google Scholar 

  50. Y.X. Xu, H. Bai, G.W. Lu, C. Li, and G.Q. Shi, J. Am. Chem. Soc. 130, 18 (2008).

    Google Scholar 

  51. X.S. Li, Y.W. Zhu, W.W. Cai, M. Borysiak, B.Y. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff, Nano Lett. 9, 12 (2009).

    CAS  Google Scholar 

  52. C.G. Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 11 (2007).

    Google Scholar 

  53. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 16 (2009).

    Google Scholar 

  54. E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M. Geier, and M.C. Hersam, J. Phys. Chem. Lett. 4, 8 (2013).

    Google Scholar 

  55. L. Huang, Y. Huang, J. Liang, X. Wan, and Y. Chen, Nano Res. 4, 7 (2011). https://doi.org/10.1007/s12274-011-0123-z.

    CAS  Article  Google Scholar 

  56. Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, and J.N. Coleman, Langmuir 26, 5 (2010).

    Google Scholar 

  57. N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D.V. Kosynkin, D. Tsentalovich, A.N.G. Parra-Vasquez, J. Schmidt, and E. Kesselman, Nat. Nanotechnol. 5, 6 (2010).

    Google Scholar 

  58. A.A. Green and M.C. Hersam, Nano Lett. 9, 12 (2009).

    Google Scholar 

  59. J.W.T. Seo, A.A. Green, A.L. Antaris, and M.C. Hersam, J. Phys. Chem. Lett. 2, 9 (2011). https://doi.org/10.1021/jz2003556.

    CAS  Article  Google Scholar 

  60. Y.T. Liang and M.C. Hersam, J. Am. Chem. Soc. 132, 50 (2010).

    Google Scholar 

  61. C. Jeong, P. Nair, M. Khan, M. Lundstrom, and M.A. Alam, Nano Lett. 11, 11 (2011). https://doi.org/10.1021/nl203041n.

    CAS  Article  Google Scholar 

  62. I.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang, J.W. Suk, L.L. Zhang, E. Peng, S.H. Mousavi, and A.B. Khanikaev, Nano Lett. 12, 11 (2012).

    Google Scholar 

  63. M.S. Lee, K. Lee, S.Y. Kim, H. Lee, J. Park, K.H. Choi, H.K. Kim, D.G. Kim, D.Y. Lee, S. Nam, and J.U. Park, Nano Lett. 13, 6 (2013). https://doi.org/10.1021/nl401070p.

    CAS  Article  Google Scholar 

  64. R. Chen, S.R. Das, C. Jeong, M.R. Khan, D.B. Janes, and M.A. Alam, Adv. Funct. Mater. 23, 5150 (2013). https://doi.org/10.1002/adfm.201300124.

    CAS  Article  Google Scholar 

  65. S.V. Murphy and A. Anthony, Nat. Biotechnol. 32, 8 (2014).

    Google Scholar 

  66. B.-J. de Gans, P.C. Duineveld, and U.S. Schubert, Adv. Mater. 16, 3 (2004).

    Google Scholar 

  67. K. Rak-Hwan, K. Dae-Hyeong, X. Jianliang, K. Bong Hoon, P. Sang-Il, P. Bruce, G. Roozbeh, Y. Jimin, L. Ming, and L. Zhuangjian, Nat. Mater. 9, 11 (2010).

    Google Scholar 

  68. A. Teichler, J. Perelaer, and U.S. Schubert, J. Mater. Chem. C 1, 10 (2013).

    Google Scholar 

  69. D. Lupo, W. Clemens, S. Breitung, and K. Hecker, Applications of Organic and Printed Electronics, ed. E. Cantatore (Springer: New York, 2012), p. 1.

    Google Scholar 

  70. J.G. Korvink, P.J. Smith, and D.Y. Shin, Inkjet-Based Micromanufacturing (Weinheim: Wiley-VCH, 2012), p. 371. https://doi.org/10.1002/9783527647101.

    Book  Google Scholar 

  71. G. Cummins and M.P.Y. Desmulliez, Circuit World 38, 4 (2012).

    Google Scholar 

  72. G. Abellan, C. Marti-Gastaldo, A. Ribera, and E. Coronado, Acc. Chem. Res. 48, 6 (2015).

    Google Scholar 

  73. S.Z. Butler, S.M. Hollen, C. Linyou, C. Yi, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, H. Seung Sae, H. Jiaxing, and A.F. Ismach, ACS Nano 7, 4 (2013).

    Google Scholar 

  74. B. Derby, Annu. Rev. Mater. Res. 40, 1 (2010).

    Google Scholar 

  75. S. Magdassi, The Chemistry of Inkjet Inks (Singapore: World Scientific Publishing Company, 2009), p. 356. https://doi.org/10.1142/6869.

    Book  Google Scholar 

  76. P. Calvert, Chem. Mater. (2001). https://doi.org/10.1021/cm0101632.

    Article  Google Scholar 

  77. D. Zhu, R. Chu, X. Zhang, E. Cheng, Z. Zhang, Y. Qu, C. Sun, and G. Duan, Chin. J. Mech. Eng. 53, 13 (2017). https://doi.org/10.3901/JME.2017.13.108.

    Article  Google Scholar 

  78. S. Dan, S. Vivek, and Colloids, Langmuir 24, 5 (2008).

    Google Scholar 

  79. U. Khan, A. O’Neil, M. Lotya, S. De, and J.N. Coleman, Small 6, 7 (2010). https://doi.org/10.1002/smll.200902066.

    CAS  Article  Google Scholar 

  80. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman, Nat. Nanotechnol. 3, 9 (2008). https://doi.org/10.1038/nnano.2008.215.

    CAS  Article  Google Scholar 

  81. J.N. Coleman, Acc. Chem. Res. 46, 1 (2013).

    Google Scholar 

  82. L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, and W.Y. Lee, Electrochem. Commun. 13, 4 (2011).

    Google Scholar 

  83. S. Lim, B. Kang, D. Kwak, W.H. Lee, J.A. Lim, and K. Cho, J. Phys. Chem. C 116, 13 (2012).

    Google Scholar 

  84. D. Kong, L.T. Le, Y. Li, J.L. Zunino, and W. Lee, Langmuir 28, 37 (2012).

    Google Scholar 

  85. P.J. Yunker, M.A. Lohr, T. Still, A. Borodin, D.J. Durian, and A.G. Yodh, Phys. Rev. Lett. 110, 3 (2013).

    Google Scholar 

  86. L. Li, Y. Guo, X. Zhang, and Y. Song, J. Mater. Chem. A 2, 44 (2014).

    Google Scholar 

  87. Y. Gao, W. Shi, W. Wang, Y. Leng, and Y. Zhao, Ind. Eng. Chem. Res. 53, 43 (2014). https://doi.org/10.1021/ie502675z.

    CAS  Article  Google Scholar 

  88. K. Arapov, R. Abbel, G. de With, and H. Friedrich, Faraday Discuss. 173, 323 (2014).

    CAS  Google Scholar 

  89. E.B. Secor and M.C. Hersam, J. Phys. Chem. Lett. 6, 4 (2015).

    Google Scholar 

  90. A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, and F. Bonaccorso, Solid State Commun. 224, 53 (2015). https://doi.org/10.1016/j.ssc.2015.08.011.

    CAS  Article  Google Scholar 

  91. E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, and M.C. Hersam, Adv. Mater. 27, 42 (2015).

    Google Scholar 

  92. S. Sacanna, D. Pine, and G.-R. Yi, Soft Matter 9, 34 (2013).

    Google Scholar 

  93. V. Tallapally, D. Damma, and S.R. Darmakkolla, Chem. Commun. 55, 11 (2019).

    Google Scholar 

  94. S.V. Morozov, K.S. Novoselov, F. Schedin, D. Jiang, A.A. Firsov, and A.K. Geim, Phys. Rev. B 72, 20 (2005).

    Google Scholar 

  95. J. Kim and B.M. Weon, Appl. Phys. Lett. 113, 183704 (2018). https://doi.org/10.1063/1.5049606.

    CAS  Article  Google Scholar 

  96. P. He and B. Derby, Adv. Mater. Interfaces (2017). https://doi.org/10.1002/admi.201700944.

    Article  Google Scholar 

  97. M.F. Schatz and G.P. Neitzel, Annu. Rev. Fluid Mech. 33, 1 (2001).

    Google Scholar 

  98. V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater. 28, 15 (2016).

    Google Scholar 

  99. S. Majee, C. Liu, B. Wu, S.-L. Zhang, and Z.-B. Zhang, Carbon 114, 77 (2017). https://doi.org/10.1016/j.carbon.2016.12.003.

    CAS  Article  Google Scholar 

  100. K.Y. Shin, J.Y. Hong, and J. Jang, Adv. Mater. 23, 18 (2011).

    Google Scholar 

  101. S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, Proc. Natl. Acad. Sci. U.S.A. 102, 30 (2005).

    Google Scholar 

  102. A. Geim, K. Novoselov, F. Schedin, S. Morozov, D. Jiang, and E. Hill, Nat. Mater. 6, 9 (2007).

    Google Scholar 

  103. V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, and S.K. Manohar, Angew. Chem. Int. Ed. 49, 12 (2010). https://doi.org/10.1002/anie.200905089.

    CAS  Article  Google Scholar 

  104. K. Müllen and J.P. Rabe, Acc. Chem. Res. 41, 4 (2008).

    Google Scholar 

  105. J. Wu, W. Pisula, and K. Müllen, Chem. Rev. 107, 3 (2007).

    Google Scholar 

  106. G. Eda and M. Chhowalla, Nano Lett. 9, 2 (2009).

    Google Scholar 

  107. P. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotechnol. 2, 10 (2007).

    Google Scholar 

  108. X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 1 (2008).

    CAS  Google Scholar 

  109. J.M. Yun, J.S. Yeo, J. Kim, H.G. Jeong, D.Y. Kim, Y.J. Noh, S.S. Kim, B.C. Ku, and S.I. Na, Adv. Mater. 23, 42 (2011). https://doi.org/10.1002/adma.201102207.

    CAS  Article  Google Scholar 

  110. X. Wen, J. Wu, D. Gao, and C. Lin, J. Mater. Chem. A 4, 35 (2016). https://doi.org/10.1039/c6ta04616a.

    Article  Google Scholar 

  111. B. Joonho, P. Young Jun, L. Minbaek, C. Seung Nam, C. Young Jin, L. Churl Seung, K. Jong Min, and W.Z. Lin, Adv. Mater. 23, 30 (2011).

    Google Scholar 

  112. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Nano Lett. 10, 12 (2010). https://doi.org/10.1021/nl102661q.

    CAS  Article  Google Scholar 

  113. W. Junbo, A. Mukul, H.A. Becerril, B. Zhenan, L. Zunfeng, C. Yongsheng, and P. Peter, ACS Nano 4, 1 (2010).

    Google Scholar 

  114. S. Bae, H.K. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132.

    CAS  Article  Google Scholar 

  115. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839 (2009). https://doi.org/10.1038/nnano.2009.292.

    CAS  Article  Google Scholar 

  116. T. Echtermeyer, L. Britnell, P. Jasnos, A. Lombardo, R. Gorbachev, A. Grigorenko, A. Geim, A. Ferrari, and K. Novoselov, Nat. Commun. 2, 1 (2011).

    Google Scholar 

  117. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, G.D.A. Fp, F. Gatti, and F.H. Koppens, Nat. Nanotechnol. 7, 363 (2012). https://doi.org/10.1038/nnano.2012.60.

    CAS  Article  Google Scholar 

  118. T. Mueller, F. Xia, and P. Avouris, Nat. Photon. 4, 5 (2010).

    Google Scholar 

  119. L. Yin, X. Tian, Z. Shang, and D. Li, Mater. Lett. 239, 132 (2018). https://doi.org/10.1016/j.matlet.2018.12.087.

    CAS  Article  Google Scholar 

  120. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, Phys. Status Solidi 247, 11–12 (2010).

    Google Scholar 

  121. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, ACS Nano 4, 2 (2010). https://doi.org/10.1021/nn901703e.

    CAS  Article  Google Scholar 

  122. W. Li, F. Li, H. Li, M. Su, M. Gao, Y. Li, D. Su, X. Zhang, and Y. Song, A.C.S. Appl. Mater. Interfaces 8, 19 (2016). https://doi.org/10.1021/acsami.6b04235.

    CAS  Article  Google Scholar 

  123. S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, and A. Abdala, Sens. Actuator B Chem. 218, 160 (2015). https://doi.org/10.1016/j.snb.2015.04.062.

    CAS  Article  Google Scholar 

  124. M.K. Choi, I. Park, D.C. Kim, E. Joh, O.K. Park, J. Kim, M. Kim, C. Choi, J. Yang, K.W. Cho, J.H. Hwang, J.M. Nam, T. Hyeon, J.H. Kim, and D.H. Kim, Adv. Funct. Mater. 25, 46 (2015). https://doi.org/10.1002/adfm.201570293.

    CAS  Article  Google Scholar 

  125. R. Beams, L. Gustavo Cancado, and L. Novotny, J. Phys.: Condens. Matter 27, 8 (2015).

    Google Scholar 

  126. N. Karim, S. Afroj, A. Malandraki, S. Butterworth, C. Beach, M. Rigout, K.S. Novoselov, A.J. Casson, and S.G. Yeates, J. Mater. Chem. C 5, 44 (2017).

    Google Scholar 

  127. K.R. Ratinac, W.R. Yang, S.P. Ringer, and F. Braet, Environ. Sci. Technol. 44, 4 (2010).

    Google Scholar 

  128. G. Lu, L.E. Ocola, and J. Chen, Nanotechnology 20, 44 (2009). https://doi.org/10.1088/0957-4484/20/44/445502.

    CAS  Article  Google Scholar 

  129. K. Hu, D.D. Kulkarni, I. Choi, and V.V. Tsukruk, Prog. Polym. Sci. 39, 11 (2014). https://doi.org/10.1016/j.progpolymsci.2014.03.001.

    CAS  Article  Google Scholar 

  130. T. Premkumar and K.E. Geckeler, Prog. Polym. Sci. 37, 4 (2012).

    Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from Natural Science Foundation of Hebei Province (CN) (Grant No. E2018202200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongbin Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Wang, Z. & Zhu, D. Highly Conductive Graphene Electronics by Inkjet Printing. J. Electron. Mater. 49, 1765–1776 (2020). https://doi.org/10.1007/s11664-019-07920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07920-1

Keywords

  • Graphene
  • inkjet printing
  • conductivity
  • electronics