Skip to main content

Radar Absorbing Structures Using Frequency Selective Surfaces: Trends and Perspectives

Abstract

Microwave radar absorbers are widely used in the strategic sector and wireless communication systems to reduce the radar cross-section of a target and electromagnetic interferences, respectively. For airborne stealth platforms, it is desired to have wide bandwidth RAS with minimum thickness and adequate structural rigidity. However, the classical RAS structures are thicker with a narrowband of absorption. So the demand of thin and broadband absorber for a modern stealth platform can be accomplished by designing metallic or resistive frequency selective surfaces (FSSs) based radar absorbing structures (RAS). In view of this, a technological assessment on frequency selective surface (FSS)-based radar absorbing structure are presented in this paper, which includes historical review on radar absorber development, design techniques, physical models, and optimization techniques. Ultra-wideband absorbers with essentially thin structures can be realized by optimizing FSS and dielectric parameters. The genetic algorithm (GA) is identified as one of the effective searching algorithms among several numerical algorithms, which are discussed in detail for single and multi-layered FSS–RAS. The fabrication techniques of resistive FSS by printing the periodic pattern using resistivity-controlled ink is also addressed. For proof-of-the concept, a prototype of cross-dipole FSS based RAS is fabricated and measured.

This is a preview of subscription content, access via your institution.

References

  1. R.L. Fante, M.T. Mc Cormack, and M.A. Wilmington, IEEE Trans. Antennas Propag. 36, 1443 (1988).

    Article  Google Scholar 

  2. B.A. Munk, Frequency Selective Surfaces: Theory and Design (New York: Wiley, 2000).

    Book  Google Scholar 

  3. L.J. Du Toit, IEEE Antennas Propag. Mag. 36, 17 (1994).

    Article  Google Scholar 

  4. K. Hatakeyama and T. Inui, IEEE Trans. Magn. 20, 1261 (1984).

    Article  Google Scholar 

  5. W. Tang and Z. Shen, IET Electron. Lett. 43, 61 (2007).

    Google Scholar 

  6. J.C. Liu, C.Y. Liu, and Y.S. Hong, Microw. Opt. Techn. Let. 48, 449 (2006).

    Article  Google Scholar 

  7. O. Luukkonen, F. Costa, C.R. Simovski, A. Monorchio, and S.A. Tretyakov, IEEE Trans. Antennas Propag. 57, 3119 (2009).

    Article  Google Scholar 

  8. F. Costa, A. Monorchio, and G. Manara, IEEE Trans. Antennas Propag. 58, 1551 (2010).

    Article  Google Scholar 

  9. S.N. Zabri, R. Cahill, and A. Schuchinsky, IET Electron. Lett. 49, 245 (2013).

    Article  Google Scholar 

  10. M. Zhao, X. Yu, Q. Wang, P. Kong, Y. He, L. Miao, and J. Jiang, IEEE Antennas Wireless Propag. Lett. 14, 1467 (2015).

    Article  Google Scholar 

  11. S.N. Zabri, R. Cahill, and A. Schuchinsky, IET Electron. Lett. 51, 162 (2016).

    Article  Google Scholar 

  12. H. Xu, S. Bie, Y. Xu, W. Yuan, Q. Chen, and J. Jiang, Compos. Part A: Appl. Sci. 80, 111 (2016).

    CAS  Article  Google Scholar 

  13. H. Xu, S. Bie, J. Jiang, D. Wan, J. Zhou, and Y. Xu, J. Electromagnet. Wave. 29, 60 (2015).

    Article  Google Scholar 

  14. M.Z. Joozdani and M.K. Amirhosseini, IEEE Trans. Antennas Propag. 65, 705 (2017).

    Article  Google Scholar 

  15. A. Tennant and B. Chambers, IEEE Microw. Compon. Lett. 14, 46 (2004).

  16. J. Li, J. Jiang, Y. He, W. Xu, Mi. Chen, L. Miao, and S. Bie. IEEE Antennas Wireless Propag. Lett. 15, 774 (2016).

  17. S. Chakravarty, R. Mittra, and N.R. Williams, IEEE Trans. Antennas Propag. 50, 284 (2002).

  18. T. Liu and S. Kim, Sci. Rep. 8, 13889 (2018).

    Article  Google Scholar 

  19. A. Kazemzadeh, IEEE Trans. Antennas Propag. 59, 135 (2011).

    Article  Google Scholar 

  20. G.I. Kiani, A.R. Weily, and K.P. Esselle, IEEE Microw. Compon. Lett. 16, 378 (2006).

    Article  Google Scholar 

  21. E. Michielssen, J.M. Sajer, S. Ranjithan, and R. Mittra, IEEE Trans. Microw. Theory Techn. 41, 1024 (1993).

    CAS  Article  Google Scholar 

  22. W. Li, M. Chen, Z. Zeng, H. Jin, Y. Pei, and Z. Zhang, Compos. Sci. Technol. 145, 10 (2017).

    CAS  Article  Google Scholar 

  23. A. Fallahi, M. Mishrikey, C. Hafner, and R. Vahldieck, IEEE Trans. Antennas Propag. 56, 1340 (2008).

    Article  Google Scholar 

  24. E.S. Torabi, A. Fallahi, and A. Yahaghi, IEEE Trans. Antennas Propag. 65, 1464 (2017).

    Article  Google Scholar 

  25. E.P. Santos, J.D.B. Filgueira, and P.S. Campos, J. Microw. Optoelectron. Electromagn. Appl. 16, 371 (2017).

    Article  Google Scholar 

  26. R.J. Langley and E.A. Parker, IET Electron. Lett. 18, 294 (1982).

    Article  Google Scholar 

  27. K.N. Rozanov, IEEE Trans. Antennas Propag. 48, 1230 (2000).

    Article  Google Scholar 

  28. S. Narayan and R.M. Jha, IEEE Antennas Propag. Mag. 57, 135 (2015).

    Article  Google Scholar 

  29. S.S. Aote, M.M. Raghuwanshi, and L. Malik, Int. J. Comput. Sci. Eng. (IJCSE). 2, 196 (2013).

    Google Scholar 

  30. R.L. Haupt and D.H. Werner, Genetic Algorithms in Electromagnetics (New York: Wiley, 2007).

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank DoE, CUSAT, Kerala, India for facilitating the CST Microwave Studio and HFSS based simulation results for validation of GA algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raveendranath U. Nair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narayan, S., Sreeja, J., Surya, V.V. et al. Radar Absorbing Structures Using Frequency Selective Surfaces: Trends and Perspectives. J. Electron. Mater. 49, 1728–1741 (2020). https://doi.org/10.1007/s11664-019-07911-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07911-2

Keywords

  • Frequency selective surface
  • RAS
  • genetic algorithm
  • FSS–RAS
  • resistive FSS–RAS