Skip to main content

Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging

Abstract

Evolution of Cu2(In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu2(In,Sn) was found, which showed two different morphologies, a coarse-grained Cu2(In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu2(In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu2(In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu2(In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu2(In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu2(In,Sn) grains had a special growth mechanism at the root of coarse Cu2(In,Sn) grains compared to normal fine Cu2(In,Sn) grains underneath coarse Cu2(In,Sn) grains.

References

  1. M.Y. Xiong and L. Zhang, J. Mater. Sci. 54, 1741 (2019).

    CAS  Article  Google Scholar 

  2. Satyanarayan and K.N. Prabhu, Mater. Sci. Technol. 29, 1430 (2013).

    Article  Google Scholar 

  3. D. Tian and T. Kutilainen, J. Electron. Mater. 32, 152 (2003).

    CAS  Article  Google Scholar 

  4. Y. Tian, Y. Wang, F. Guo, L.M. Ma, and J. Han, J. Electron. Mater. 48, 2770 (2019).

    CAS  Article  Google Scholar 

  5. S. Narayan and K.N. Prabhu, Mater. Sci. Technol. 29, 464 (2013).

    Article  Google Scholar 

  6. M. Hasnine and M.J. Bozackg, J. Electron. Mater. 48, 3970 (2019).

    CAS  Article  Google Scholar 

  7. G.Y. Liu, S.X. Jin, and L.K. Grechcini, Mater. Sci. Technol. 33, 1907 (2017).

    CAS  Article  Google Scholar 

  8. H.W. Miao, J.G. Duh, and B.S. Chiou, J. Mater. Sci. Mater. Electron. 11, 609 (2000).

    CAS  Article  Google Scholar 

  9. L. Yang, L. Zhu, Y. Zhang, P. Liu, N. Zhang, S. Zhou, and L. Jiang, Mater. Sci. Technol. 34, 992 (2018).

    CAS  Article  Google Scholar 

  10. Q. Hongbo, L. Xinghe, and Y. Wu, J. Electron. Mater. 48, 3410 (2019).

    Article  Google Scholar 

  11. V.G. Shepelevich, O.V. Gusakova, E.L. Koukharenko, and S.V. Husakova, J. Mater. Sci. 54, 2577 (2019).

    CAS  Article  Google Scholar 

  12. S.K. Lin and S.W. Chen, J. Mater. Res. 21, 1712 (2006).

    CAS  Article  Google Scholar 

  13. S.W. Chen and S.K. Lin, J. Mater. Res. 21, 3065 (2006).

    CAS  Article  Google Scholar 

  14. J.W. Xian, S.A. Belyakov, M. Ollivier, K. Nogita, H. Yasuda, and C.M. Gourlay, Acta Mater. 126, 540 (2017).

    CAS  Article  Google Scholar 

  15. M.Y. Li, M. Yang, and J.Y. Kim, Mater. Lett. 66, 135 (2012).

    CAS  Article  Google Scholar 

  16. F.F. Tian, Z.Q. Liu, P.J. Shang, and J. Guo, J Alloys Compd. 591, 351 (2014).

    CAS  Article  Google Scholar 

  17. F.F. Tian, C.F. Li, M. Zhou, and Z.Q. Liu, J. Alloys Compd. 740, 500 (2018).

    CAS  Article  Google Scholar 

  18. P.J. Shang, Z.Q. Liu, and D.X. Li, Acta Mater. 57, 4697 (2009).

    CAS  Article  Google Scholar 

  19. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  20. P.E. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  21. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    CAS  Article  Google Scholar 

  22. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  23. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  24. F.F. Tian and Z.Q. Liu, J. Alloys. Compd. 588, 662 (2014).

    CAS  Article  Google Scholar 

  25. F.C. Frank, Acta Cryst. 4, 497 (1951).

    CAS  Article  Google Scholar 

  26. B.J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997).

    CAS  Article  Google Scholar 

  27. G.C. Che and M. Ellner, Powder Diffr. 7, 107 (1992).

    CAS  Article  Google Scholar 

  28. F.F. Tian, P.J. Shang, and Z.Q. Liu, Mater. Lett. 121, 185 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFB0305700) and the fundamental research funds for the Central Universities (Grant No. N160208001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Quan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Pang, X., Xu, B. et al. Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging. J. Electron. Mater. 49, 2651–2659 (2020). https://doi.org/10.1007/s11664-019-07909-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07909-w

Keywords

  • In-48Sn solder
  • polycrystalline Cu
  • Cu2(In,Sn)
  • growth orientation