Skip to main content

Effect of Acid Doping on Junction Characteristics of ITO/Polyaniline/N719/Ag Diode

Abstract

In this paper, we demonstrate the fabrication and electrical characterization of a heterojunction Schottky diode between polyaniline (PANI) and a ruthenium-based organic semiconductor (N719). In this system, PANI behaves as an organic p-type conducting polymer while N719 acts as an n-type semiconductor. The fabrication was carried out using different methods to deposit each component: solution casting for PANI, spray coating for N719, and screen-printing for silver paste. The PANI film was doped by soaking it in HCl solutions of different concentrations to form emeraldine salt, i.e., a conductive type of PANI. Electrical characterizations of PANI and the diode were performed using conductivity and current density–voltage (J–V) measurements. The maximum conductivity of PANI was obtained at 3.18 × 10−2 S/cm using an HCl concentration of 1 M. The fabricated diode exhibited a low Schottky barrier (ΦB = 0.48 eV) and rectifying behavior (γ ∼ 9) with moderate ideality factor (η ∼ 8). Acid doping of PANI caused better diode performance and an increase in current density by four orders of magnitude.

References

  1. J. Huang, Pure Appl. Chem. 78, 15 (2006).

    CAS  Article  Google Scholar 

  2. R. Wang, L. Huang, and X. Tian, J. Phys. Chem. C 116, 13120 (2012).

    CAS  Article  Google Scholar 

  3. J. Stejskal, P. Kratochvil, and A.D. Jenkins, Polym 37, 367 (1996).

    CAS  Article  Google Scholar 

  4. M. Deniz and H. Deligöz, Colloids Surf. A 563, 206 (2019).

    CAS  Article  Google Scholar 

  5. M.R. Choi, S.H. Woo, T.H. Han, K.G. Lim, S.Y. Min, T.W. Lee, W.M. Yun, O.K. Kwon, C.E. Park, K.D. Kim, H.K. Shin, M.S. Kim, T. Noh, J.H. Park, K.H. Shin, and J. Jang, ChemSusChem 4, 363 (2011).

    CAS  Article  Google Scholar 

  6. Z. Mo, W. Qui, X.C. Yang, and J. Yan, J. Pol. Res. 16, 39 (2009).

    CAS  Article  Google Scholar 

  7. J.H. Cheung, A.F. Fou, and M.F. Rubner, Thin Solid Films 84, 985 (1994).

    Article  Google Scholar 

  8. D. Chinn, J. DuBow, J. Li, J. Janata, and M. Josowicz, Chem. Mater. 7, 1510 (1995).

    CAS  Article  Google Scholar 

  9. N.E. Agbor, M.C. Petty, and A.P. Monkman, Sens. Actuators B Chem. 28, 173 (1995).

    CAS  Article  Google Scholar 

  10. J.C. Chiang and A.G. Macdiarmid, Synth. Met. 13, 193 (1986).

    CAS  Article  Google Scholar 

  11. D.W. Hatchett, M. Josowicz, and J. Janata, J. Phys. Chem. B 103, 10992 (1999).

    CAS  Article  Google Scholar 

  12. A.G. MacDiarmid and A.J. Epstein, Synth. Met. 69, 85 (1995).

    CAS  Article  Google Scholar 

  13. Y. Noskov, A. Sorochinsky, V. Kukhar, and A. Pud, ACS Omega 4, 7400 (2019).

    CAS  Article  Google Scholar 

  14. D. Yaohua and M. Shaoli, Electrochim. Acta 36, 2015 (1991).

    Article  Google Scholar 

  15. S. Ahn, M.H. Park, S.H. Jeong, Y.H. Kim, J. Park, S. Kim, H. Kim, H. Cho, C. Wolf, M. Pei, H. Yang, and T.W. Lee, Adv. Funct. Mater. 1807535, 1 (2018).

    Google Scholar 

  16. C. Li, Y. Wang, M. Wan, and S. Li, Synth. Met. 39, 91 (1990).

    CAS  Article  Google Scholar 

  17. S.A. Chen, K.R. Chuang, C.I. Chao, and H.T. Lee, Synth. Met. 82, 207 (1996).

    CAS  Article  Google Scholar 

  18. P.J. Saikia and P.C. Sarmah, Mat. Sci. Appl. 2, 1022 (2011).

    CAS  Google Scholar 

  19. N.S. Singh, L. Kumar, A. Kumar, S. Vaisakh, S.D. Singh, K. Sisodiya, S. Srivastava, M. Kansal, S. Rawat, and T.A. Singh, Tanya, Anita. Mater. Sci. Semicond. Process. 60, 29 (2017).

    CAS  Article  Google Scholar 

  20. S.K. Dey, S. Baglari, and D. Sarka, Indian J. Phys. 90, 29 (2016).

    CAS  Article  Google Scholar 

  21. J.M. Ghushe, S.M. Giripunje, and S.B. Kondawar, J. Phys. Sci. 28, 99 (2017).

    Article  Google Scholar 

  22. M. Trchova and J. Stejskal, Pure Appl. Chem. 83, 1803 (2011).

    CAS  Article  Google Scholar 

  23. Y. Wei, X. Tang, and Y. Sun, J. Pol. Sci. 27, 2385 (1989).

    CAS  Article  Google Scholar 

  24. R. Singh, V. Arora, R.P. Tandon, S. Chandra, and A. Mansingh, J. Mater. Sci. 33, 2067 (1998).

    CAS  Article  Google Scholar 

  25. S. Chen and Y. Fang, Synth. Met. 60, 215 (1993).

    CAS  Article  Google Scholar 

  26. H. Tomozawa, F. Braun, S. Phillps, A.J. Heeger, and H. Kroemer, Synth. Met. 22, 63 (1987).

    CAS  Article  Google Scholar 

  27. E.H. Rhoderick, Metal-Semiconductor Contacts (Monographs in Electrical and Electronic Engineering (Oxford: Clarendon Press, 1978), p. 96.

    Google Scholar 

  28. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1971).

    Google Scholar 

  29. S. Boughdachi, Y. Badali, Y. Azizian-kalandaragh, and S. Altindal, J. Elect. Mat. (2018). https://doi.org/10.1007/s11664-018-6593-y.

    Article  Google Scholar 

  30. N.S. Singh, L. Kumar, A. Kumar, S. Vaisakh, S.D. Singh, K. Sisodiya, S. Srivastava, M. Kansal, S. Rawat, and ThA Singh, Tanya, Anita. Mat. Sci. Semicond. Process. 60, 29 (2017).

    CAS  Article  Google Scholar 

  31. S.K. Dey, S. Baglari, and D. Sarkar, Indian. J Phys. 90, 29 (2016).

    CAS  Google Scholar 

  32. L. Pereira, Organic Light-Emitting Diodes: The Use of Rare-Earth and Transition Metals (Boca Raton: Pan Stanford Publishing, 2012), pp. 48–93.

    Book  Google Scholar 

  33. S. Angappane, N. Rajeev Kimi, T.S. Natarajan, G. Rangarajan, and B. Wessling, Thin Solid Films 417, 202 (2002).

    CAS  Article  Google Scholar 

  34. J.C.W. Chien, Polyacetylene: Chemistry, Physics, and Material Science (Orlando: Academic Press, 1984), p. 581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veinardi Suendo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reza, M., Steky, F.V. & Suendo, V. Effect of Acid Doping on Junction Characteristics of ITO/Polyaniline/N719/Ag Diode. J. Electron. Mater. 49, 1835–1840 (2020). https://doi.org/10.1007/s11664-019-07906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07906-z

Keywords

  • Heterojunction Schottky diode
  • polyaniline
  • emeraldine salt
  • electrical conductivity
  • Schottky barrier height
  • acid doping