Skip to main content
Log in

Effects of External Magnetic Fields on Optical Properties of an Oxide Quantum Dot Using the Smorodinsky–Winternitz Potential

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of a magnetic field and geometrical confinement on the ground-state energy of an exciton and the optical gain in a CdO/ZnO spherical core/shell quantum dot have been investigated using the Smorodinsky–Winternitz potential. The impact of the dielectric constant discontinuity at the nanostructure boundaries is included, as well as the built-in internal fields comprising the spontaneous and piezoelectric polarizations within the heterostructure. Numerical calculations are carried out to obtain the exciton energy using the variational formalism within the single-band effective-mass approximation, whereas the optical properties are found using the compact density matrix method. The magnetic-field-induced oscillator strength and the transition lifetime of the exciton are investigated as functions of the dot radius in the core/shell quantum dot. The normalized optical matrix elements and the optical gain as a function of the carrier density in the presence of a magnetic field strength are studied. The results reveal that the exciton energy is insensitive to the magnetic field in the strong geometrical confinement region. The optical matrix elements increase with the charge carrier screening for all the magnetic field strengths, and this effect can be applied to improve the optical gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Xu, S. Kumar, and T. Nann, J. Am. Chem. Soc. 128, 1054 (2006).

    CAS  Google Scholar 

  2. X. Zhong, R. Xie, Y. Basche, T. Zhang, and W. Knoll, Chem. Mater. 17, 4038 (2005).

    CAS  Google Scholar 

  3. S. Baskoutas, E. Paspalakis, and A.F. Terzis, Phys. Rev. B 74, 153306 (2006).

    Google Scholar 

  4. İ. Karabulut, Ü. Atav, H. Şafak, and M. Tomak, Eur. Phys. J. B 55, 282 (2007).

    Google Scholar 

  5. A. Özmen, Y. Yakar, B. Çakir, and Ü. Atav, Opt. Commun. 282, 3999 (2009).

    Google Scholar 

  6. B. Chen, K.-X. Guo, Z.-L. Liu, R.-Z. Wang, Y.-B. Zheng, and B. Li, J. Phys.: Condens. Matter 20, 255214 (2008).

    Google Scholar 

  7. M.G. Barseghyan, C.A. Duque, E.C. Niculescu, and A. Radu, Superlattices Microstruct. 66, 10 (2014).

    CAS  Google Scholar 

  8. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).

    CAS  Google Scholar 

  9. R.D. Schaller and V.I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).

    CAS  Google Scholar 

  10. J. El Khamkhami, E. Feddi, E. Assaidc, F. Dujardind, B. Stébé, and J. Diouri, Physica E 15, 99 (2002).

    Google Scholar 

  11. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008).

    CAS  Google Scholar 

  12. L. Shi and Z.-W. Ya, Int. J. Mod. Phys. B 33, 195013 (2019).

    Google Scholar 

  13. L. Lu, W. Xie, and Z. Shu, Phys. B 406, 3735 (2011).

    CAS  Google Scholar 

  14. N. Aghoutane, M. El-Yadri, A. El Aouami, E. Feddi, F. Dujardin, M. El Haouari, C.A. Duque, C.V. Nguyen, and H.V. Phuc, Appl. Phys. A 125, 17 (2019).

    Google Scholar 

  15. M. El Haouari, A. Talbi, E. Feddi, H. El Ghazi, A. Oukerroume, and F. Dujardin, Opt. Commun. 383, 231 (2017).

    Google Scholar 

  16. Z. Zeng, C.S. Garoufalis, A.F. Terzis, and S. Baskoutas, J. Appl. Phys. 114, 023510 (2013).

    Google Scholar 

  17. Z. Zeng, C.S. Garoufalis, and S. Baskoutas, J. Nanoelectron. Optoelectron. 11, 615 (2016).

    CAS  Google Scholar 

  18. N. Aghoutane, M. El-Yadri, A. El Aouami, E. Feddi, G. Long, M. Sadoqi, F. Dujardin, C.V. Nguyen, N.N. Hieu, and H.V. Phuc, MRS Commun. 9, 663 (2019).

    CAS  Google Scholar 

  19. G.V.B. de Souza and A. Bruno-Alfonso, Physica E 66, 128 (2015).

    Google Scholar 

  20. A. Chafai, I. Essaoudi, A. Ainane, F. Dujardin, and R. Ahuja, Chin. J. Phys. 57, 189 (2019).

    CAS  Google Scholar 

  21. V.A. Holovastky, O.M. Voitsekhiska, and M.Y. Yakhnevych, Superlattices Microstruct. 116, 9 (2018).

    Google Scholar 

  22. H. Taş and M. şahin, J. Appl. Phys. 112, 053717 (2012).

    Google Scholar 

  23. G. Allan, C. Delerue, M. Lannoo, and E. Martin, Phys. Rev. B 52, 11982 (1995).

    CAS  Google Scholar 

  24. M. Cristea and E.C. Niculescu, Eur. Phys. J. B 85, 191 (2012).

    Google Scholar 

  25. P.C. Lily Jasmine, A.J. Peter, and C.W. Lee, Chem. Phys. 452, 40 (2015).

    Google Scholar 

  26. P. Winternitz, Y.A. Smorodinsk y, M. Uhlir, and I. Fris, J. Nucl. Phys. 4, 444 (1967).

    Google Scholar 

  27. A. Deyasi, S. Bhattacharyya, and N.R. Das, Superlattices Microstruct. 6, 414 (2013).

    Google Scholar 

  28. M. Jin and W. Xie, Superlattices Microstruct. 73, 330 (2014).

    CAS  Google Scholar 

  29. N. Karthikeyan and A. John Peter, J. Nanophotonics 13, 036008-1-11 (2019).

    Google Scholar 

  30. J.L. Movilla and J. Planelles, Comput. Phys. Commun. 170, 144 (2005).

    CAS  Google Scholar 

  31. W. Xie, Physica B 358, 109 (2005).

    CAS  Google Scholar 

  32. C.H. Wang, T.T. Chen, Y.F. Chen, M.L. Ho, C.W. Lai, and P.T. Chou, Nanotechnology 19, 115702 (2008).

    Google Scholar 

  33. F. Rajadell, J.I. Climente, J. Planelles, and A. Bertoni, J. Phys. Chem. C 113, 11268 (2009).

    CAS  Google Scholar 

  34. M. Gong, W. Zhang, G.C. Guo, and L. He, Appl. Phys. Lett. 99, 231106 (2011).

    Google Scholar 

  35. B. Alen, J. Bosch, D. Granados, J. Martinez-Pastor, J.M. Garcia, and L. Gonzalez, Phys. Rev. B 75, 045319 (2007).

    Google Scholar 

  36. D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum Dot Heterostructure (New York: Wiley, 1999).

    Google Scholar 

  37. S.H. Park, W.P. Hong, and J.J. Kim, Sol. Stat. Commun. 261, 21 (2017).

    CAS  Google Scholar 

  38. K. Luhluh Jahan, A. Boda, I.V. Shankar, C.N. Raju, and A. Chatterjee, Sci. Rep. 8, 5073 (2018).

    Google Scholar 

  39. Y. Yakar, B. Çakır, and A. Özmen, Chem. Phys. Lett. 708, 138 (2018).

    CAS  Google Scholar 

  40. M.P. Telenkov, Y. Mityagin, T.N.V. Doan, and K.K. Nagaraja, J. Phys. Commun. 2, 085019 (2018).

    Google Scholar 

  41. T. Shelawati, M.S. Nurisya, C. Kar Tima, and A.K. Mazliana, Superlattices Microstruct. 131, 95 (2019).

    Google Scholar 

  42. A.M. Mercado, J. Sierra-Ortega, L.F. Garcia, and I.D. Mikhailov, J. Phys: Conf. Ser. 1219, 012015 (2019).

    CAS  Google Scholar 

  43. J. Ciers, G. Jacopin, G. Callsen, C. Bougerol, J.-F. Carlin, R. Butté, and N. Grandjean, Jpn. J. Appl. Phys. 57, 090305 (2018).

    Google Scholar 

  44. S. Chen and A. Nurmikko, Optica 5, 1141 (2018).

    CAS  Google Scholar 

  45. S. Adachi, Properties of Semiconductor Alloys Group-IV, III–V and II–VI Semiconductors (New York: Wiley, 2009).

    Google Scholar 

  46. P. Gopal and N.A. Spaldin, J. Electron. Mater. 35, 538 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. John Peter or Chang Woo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, A.J., Karthikeyan, N. & Lee, C.W. Effects of External Magnetic Fields on Optical Properties of an Oxide Quantum Dot Using the Smorodinsky–Winternitz Potential. J. Electron. Mater. 49, 2257–2264 (2020). https://doi.org/10.1007/s11664-019-07892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07892-2

Keywords

Navigation