Skip to main content

Influence of Ag Layer Location on the Performance of Cu2ZnSnS4 Thin Film Solar Cells

Abstract

In this work, the (Ag,Cu)2ZnSnS4 (ACZTS) thin films were fabricated via sputtering with a multi-target to form different layer stacks, i.e., (S1) ZnS/Sn/Cu/Ag/Mo,(S2) ZnS/Sn/Ag/Cu/Mo and (S3) ZnS/Ag/Sn/Cu/Mo. The stacked precursors were sulfurized through a soft annealing, followed by a two-step sulfurization in a chamber filled with N2 at standard atmospheric pressure. The x-ray photoelectron spectroscopy elemental profile showed a vertical non-uniform distribution of Ag in the film. Based on the results of scanning electron microscopy and electron probe microanalysis, Ag enrichment of the upper surface was beneficial for the grain size. Moreover, a dense, uniform surface could be obtained and the stability of the elemental composition could be maintained. After optimizing the order of the Ag layers, the efficiency of the solar cells increased from 1.30% to 3.65%, an improvement of 181%. The open circuit voltage is increased from 448 mV to 630 mV because of the reduced voids, increased grain size, and reduced CuZn antisite defects.

References

  1. X. Liu, R. Hao, Q. Zhao, F. Chang, Y. Li, K. Gu, L. Wang, B. Liu, and J. Guo, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 73, 957 (2018).

  2. Y.F. Qi, D.X. Kou, W.H. Zhou, Z.J. Zhou, Q.W. Tian, Y.N. Meng, X.S. Liu, Z.L. Du, and S.X. Wu, Energy Environ. Sci. 10, 2401 (2017).

    CAS  Article  Google Scholar 

  3. W. Li, X. Liu, H. Cui, S. Huang, and X. Hao, J. Alloys Compd. 625, 277 (2015).

    CAS  Article  Google Scholar 

  4. J. Li, S.Y. Kim, D. Nam, X. Liu, J.H. Kim, H. Cheong, W. Liu, H. Li, Y. Sun, and Y. Zhang, Sol. Energy Mater. Sol. Cells 159, 447 (2017).

    CAS  Article  Google Scholar 

  5. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M.A. Green, and X. Hao, Nat. Energy 3, 764 (2018).

    CAS  Article  Google Scholar 

  6. Q. Zhao, R. Hao, S. Liu, M. Yang, X. Liu, F. Chang, Y. Lu, and S. Wang, Phys. B Condens. Matter 523, 62 (2017).

    CAS  Article  Google Scholar 

  7. T. Gokmen, O. Gunawan, T.K. Todorov, and D.B. Mitzi, Appl. Phys. Lett. 103, 2 (2013).

    Article  Google Scholar 

  8. Z.K. Yuan, S. Chen, H. Xiang, X.G. Gong, A. Walsh, J.S. Park, I. Repins, and S.H. Wei, Adv. Funct. Mater. 25, 6733 (2015).

    CAS  Article  Google Scholar 

  9. S. Shanmuga Priya, A. Rao, I. Thirunavukkarasu, and V. Nayak, Int. J. ChemTech Res. 9, 261 (2016).

    Google Scholar 

  10. C. Wang, S. Chen, J.H. Yang, L. Lang, H.J. Xiang, X.G. Gong, A. Walsh, and S.H. Wei, Chem. Mater. 26, 3411 (2014).

    CAS  Article  Google Scholar 

  11. T. Gershon, D. Bishop, P. Antunez, S. Singh, K.W. Brew, Y.S. Lee, O. Gunawan, T. Gokmen, T. Todorov, and R. Haight, Curr. Opin. Green Sustain. Chem. 4, 29 (2017).

    Article  Google Scholar 

  12. J. Kumar and S. Ingole, J. Alloys Compd. 727, 1089 (2017).

    CAS  Article  Google Scholar 

  13. H. Cui, X. Liu, F. Liu, X. Hao, N. Song, and C. Yan, Appl. Phys. Lett. 041115, 2 (2014).

  14. B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha, Appl. Phys. Lett. 053903 (2012).

  15. W. Li, J. Chen, H. Cui, F. Liu, and X. Hao, Mater. Lett. 130, 87 (2014).

  16. F. Liu, K. Sun, W. Li, C. Yan, H. Cui, L. Jiang, X. Hao, and A. Martin, Appl. Phys. Lett. 051105 (2015).

  17. F. Liu, J. Huang, K. Sun, C. Yan, Y. Shen, J. Park, A. Pu, F. Zhou, X. Liu, J.A. Stride, M.A. Green, and X. Hao, NPG Asia Mater. 9, e401 (2017).

    CAS  Article  Google Scholar 

  18. J. Li, Y. Zhang, H. Wang, L. Wu, J. Wang, W. Liu, Z. Zhou, Q. He, and Y. Sun, Sol. Energy Mater. Sol. Cells 132, 363 (2015).

    CAS  Article  Google Scholar 

  19. M. Yang, S. Wang, Z. Jing, Z. Li, S. Liu, R. Guo, Y. Tang, R. Hao, and P. Yang, Bull. Chin. Ceram. Soc. 34, 222 (2015).

    Google Scholar 

  20. H. Yoo and J. Kim, Thin Solid Films 518, 6567 (2010).

    CAS  Article  Google Scholar 

  21. M.G. Gang, K.V. Gurav, S.W. Shin, C.W. Hong, J.H. Min, M.P. Suryawanshi, S.A. Vanalakar, D.S. Lee, and J.H. Kim, Phys. Status Solidi Curr. Top. Solid State Phys. 12, 713 (2015).

    CAS  Google Scholar 

  22. Y. Feng, T.K. Lau, G. Cheng, L. Yin, Z. Li, H. Luo, Z. Liu, X. Lu, C. Yang, and X. Xiao, CrystEngComm 18, 1070 (2016).

    CAS  Article  Google Scholar 

  23. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 59, 1198 (2011).

    CAS  Article  Google Scholar 

  24. Y. Liu, F. Sun, and J. Wang, Trans. China Weld. Inst. 32, 25 (2011).

    Google Scholar 

  25. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011).

    CAS  Article  Google Scholar 

  26. K. Sato, M. Fujiyoshi, M. Date, T. Shoji, and K.N. Tu, J. Mater. Res. 19, 2887 (2005).

    Google Scholar 

  27. F. Yang, R. Ma, W. Zhao, X. Zhang, and X. Li, J. Alloys Compd. 689, 849 (2016).

    CAS  Article  Google Scholar 

  28. D.M. Berg, R. Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, and A. Pérez-Rodriguez, Appl. Phys. Lett. 100, 192103 (2012).

    Article  Google Scholar 

  29. P.A. Fernandes, P.M.P. Salomé, and A.F. da Cunha, Thin Solid Films 517, 2519 (2009).

    CAS  Article  Google Scholar 

  30. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 4, 1 (2014).

    Article  Google Scholar 

  31. S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, and J.Y. Lee, Sol. Energy Mater. Sol. Cells 95, 3202 (2011).

    CAS  Article  Google Scholar 

  32. A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Espíndola-Rodríguez, S. López-Marino, M. Placidi, L. Calvo-Barrio, A. Pérez-Rodríguez, and E. Saucedo, Sol. Energy Mater. Sol. Cells 112, 97 (2013).

    CAS  Article  Google Scholar 

  33. J. Scragg, T. Ericson, T. Kubart, M. Edoff, and C. Platzer-Bjorkman, Chem. Mater. 204, 4625 (2011).

    Article  Google Scholar 

  34. A. Redinger, D.M. Berg, P.J. Dale, and S. Siebentritt, J. Am. Chem. Soc. 10, 3320 (2011).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiting Hao, Jie Guo or Abuduwayiti Aierken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, K., Hao, R., Guo, J. et al. Influence of Ag Layer Location on the Performance of Cu2ZnSnS4 Thin Film Solar Cells. J. Electron. Mater. 49, 1819–1826 (2020). https://doi.org/10.1007/s11664-019-07890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07890-4

Keywords

  • Magnetron sputtering
  • multi-target
  • two-step sulfurization
  • Ag-doped CZTS solar cells