Skip to main content

Advertisement

Log in

Effect of Post-Heat Treatment on Physical Properties of Nanostructured TiO2 Powders Prepared by a Sol–Gel Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A nanostructured TiO2 powder was produced by a sol–gel method. The resultant powder was sintered at different temperatures ranging from 300°C to 800°C, for a constant time of 2 h. X-ray diffraction (XRD) results indicated that an increase in sintering temperature caused a transformation of the TiO2 powder from amorphous to polycrystalline. At temperatures lower than 500°C, a pure polycrystalline anatase phase was present, while a rutile phase was present at 800°C. A gradual transformation from the anatase to rutile phase occurred between 500°C and 800°C. A high-resolution transmission electron microscope (HRTEM) with selected area electron diffraction (SAED) capability was used to elucidate the shape and size of the particles as well as their electron diffraction. The TEM images displayed an increase in particle size from 20 nm to 90 nm when the sintering temperature was increased from 300°C to 800°C. The SAED patterns supported the XRD results. The diffuse reflectance data for the investigated samples were used to estimate their bandgap energy (\( E_{\rm{g}} \)), which revealed that samples sintered at 500°C and 800°C had energy gap values of 3.18 eV and 3.01 eV, corresponding to pure anatase and pure rutile phases, respectively. Current–voltage (IV) measurements were carried out on the sintered samples to calculate sample resistivity at room temperature. The results showed a slight increase in conductivity with increased sintering temperature up to 700°C, followed by a significant increase at 800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pathak, T. Wagner, T. Adhikari, and J.M. Nunzi, Synth. Met. 199, 87 (2015). https://doi.org/10.1016/j.synthmet.2014.11.015.

    Article  CAS  Google Scholar 

  2. M. Schiavello, eds., Photoelectrochemistry, Photocatalysis and Photoreactors Fundamentals and Developments (Dordrecht: Springer, 2013).

    Google Scholar 

  3. A.L. Linsebigler, G. Lu, and J.T. Yates Jr, Chem. Rev. 95, 735 (1995). https://doi.org/10.1021/cr00035a013.

    Article  CAS  Google Scholar 

  4. M. Usman, K. Rasool, S.S. Batool, Z. Imran, M. Ahmad, H. Jamil, M.A. Rafiq, and M.M. Hasan, J. Mater. Sci. Technol. 30, 748 (2014). https://doi.org/10.1016/j.jmst.2013.12.002.

    Article  CAS  Google Scholar 

  5. O.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, and C.A. Grimes, J. Nanosci. Nanotechnol. 5, 1158 (2005). https://doi.org/10.1166/jnn.2005.195.

    Article  CAS  Google Scholar 

  6. X. Zhang, D. Li, J. Wan, and X. Yu, Mat. Sci. Semicond. Proc. 43, 47 (2016). https://doi.org/10.1016/j.mssp.2015.11.020.

    Article  CAS  Google Scholar 

  7. C. Chao, Z. Ren, S. Yin, G. Xu, S. Gong, X. Yang, X. Li, G. Shen, and G. Han, Adv. Powder Technol. 25, 745 (2014). https://doi.org/10.1016/j.apt.2013.11.006.

    Article  CAS  Google Scholar 

  8. X. Sun and Y. Li, Chem. Eur. J. 9, 2229 (2003). https://doi.org/10.1002/chem.200204394.

    Article  CAS  Google Scholar 

  9. Y.F. Su, M.C. Lee, G.B. Wang, and Y.H. Shih, Chem. Eng. J. 253, 274 (2014). https://doi.org/10.1016/j.cej.2014.05.076.

    Article  CAS  Google Scholar 

  10. B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, and N. Wang, Appl. Phys. Lett. 82, 281 (2003). https://doi.org/10.1063/1.1537518.

    Article  CAS  Google Scholar 

  11. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, and H. Xu, J. Am. Chem. Soc. 125, 12384 (2003). https://doi.org/10.1021/ja0369461.

    Article  CAS  Google Scholar 

  12. P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011). https://doi.org/10.1002/anie.201001374.

    Article  CAS  Google Scholar 

  13. J.H. Jung, H. Kobayashi, K.J. Van Bommel, S. Shinkai, and T. Shimizu, Chem. Mater. 14, 1445 (2002). https://doi.org/10.1021/cm011625e.

    Article  CAS  Google Scholar 

  14. P.D. File, W.F. McClune, International Centre for Diffraction Data (Newtown Square, PA, USA, 2007).

  15. I. Hernández-Perez, A.M. Maubert, L. Rendón, P. Santiago, H. Herrera-Hernández, L. Díaz-Barriga Arceo, V. Garibay Febles, E. Palacios Gonzalez, and L. González-Reyes, Int. J. Electrochem. Sci. 7, 8832 (2012).

    Google Scholar 

  16. D.A. Hanaor and C.C. Sorrell, J. Mater. Sci. 46, 855 (2011). https://doi.org/10.1007/s10853-010-5113-0.

    Article  CAS  Google Scholar 

  17. R.D. Savio and A. Kennedy, Mechanical Engineering Technology (Houston: University of Houston, 2011).

    Google Scholar 

  18. M. Tsega and F.B. Dejene, Heliyon 3, e00246 (2017). https://doi.org/10.1016/j.heliyon.2017.e00246.

    Article  Google Scholar 

  19. K. Prasad, D.V. Pinjari, A.B. Pandit, and S.T. Mhaske, Ultrason. Sonochem. 17, 409 (2010). https://doi.org/10.1016/j.ultsonch.2009.09.003.

    Article  CAS  Google Scholar 

  20. P. Muhammed Shafi and A. Chandra Bose, AIP Adv. 5, 057137 (2015). https://doi.org/10.1063/1.4921452.

    Article  CAS  Google Scholar 

  21. C. Suryanarayana and M. Grant Norton, X-Ray Diffraction: A Practical Approach, 1st ed. (Boston: Springer, 1998), pp. 208–214.https://doi.org/10.1007/978-1-4899-0148-4.

    Book  Google Scholar 

  22. M. Birkholz, P.F. Fewster, and C. Genzel, Thin Film Analysis by X-Ray Scattering, 1st ed. (New York: Wiley, 2006), pp. 122–123.

    Google Scholar 

  23. L.B. Patle, P.K. Labhane, V.R. Huse, and A.L. Chaudhari, IJSRSET 1, 66 (2015). https://doi.org/10.1016/j.apt.2010.11.006.

    Article  CAS  Google Scholar 

  24. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller, Langmuir 21, 1931 (2005). https://doi.org/10.1021/la0477183.

    Article  CAS  Google Scholar 

  25. K.G.K. Warrier, C.P. Sibu, and K.V. Baiju, Trans. Indian Ceram. Soc. 62, 75 (2003). https://doi.org/10.1080/0371750X.2003.11012081.

    Article  CAS  Google Scholar 

  26. M. Ahmadi, M.R. Ghasemi, and H.H. Rafsanjani, J. Mater. Sci. Eng. 5, 87 (2011).

    Google Scholar 

  27. L. Yang, M. Gong, X. Jiang, D. Yin, X. Qin, B. Zhao, and W. Ruan, J. Raman Spectrosc. 46, 287 (2015). https://doi.org/10.1002/jrs.4645.

    Article  CAS  Google Scholar 

  28. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R.D. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008). https://doi.org/10.1088/0957-4484/19/14/145605.

    Article  CAS  Google Scholar 

  29. D.B. Williams and C.B. Carter, Transmission Electron Microscopy; A Textbook for Materials Science Spectrometry, 2nd ed. (New York: Springer, 2009), pp. 283–305.

    Google Scholar 

  30. W. Zhang, L. Zou, and D. Dionysio, J. Exp. Nanosci. 10, 1153 (2015). https://doi.org/10.1080/17458080.2014.985751.

    Article  CAS  Google Scholar 

  31. S. Kumar, N.K. Verma, and M.L. Singla, Dig. J. Nanomater. Biosci. 7, 607 (2012).

    Google Scholar 

  32. V. Tallapally, T.A. Nakagawara, D.O. Demchenko, Ü. ÖzgÜr, and I.U. Arachchige, Nanoscale 10, 20296 (2018). https://doi.org/10.1039/c8nr04399j.

    Article  CAS  Google Scholar 

  33. M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, and D.P. Padiyan, J. Exp. Nanosci. 11, 1074 (2016). https://doi.org/10.1080/17458080.2016.1186292.

    Article  CAS  Google Scholar 

  34. F. Yakuphanoglu, Solid State Sci. 14, 673 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.03.016.

    Article  CAS  Google Scholar 

  35. X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, and J.R. Lombardi, J. Phys. Chem. C 116, 8792 (2012). https://doi.org/10.1021/jp2122196.

    Article  CAS  Google Scholar 

  36. T. Edvinsson, R. Soc. Open Sci. 5, 180387 (2018). https://doi.org/10.1098/rsos.180387.

    Article  CAS  Google Scholar 

  37. A. Al-Haddad, Z. Wang, R. Xu, H. Qi, R. Vellacheri, U. Kaiser, and Y. Lei, J. Phys. Chem. C 119, 16331 (2015). https://doi.org/10.1021/acs.jpcc.5b02665.

    Article  CAS  Google Scholar 

  38. A. Kittiravechote, A. Usman, H. Masuhara, and I. Liau, RSC Adv. 7, 42606 (2017). https://doi.org/10.1039/c7ra06031a.

    Article  CAS  Google Scholar 

  39. H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, and Y.H. Tseng, Appl. Catal. B-Environ. 68, 1 (2006). https://doi.org/10.1016/j.apcatb.2006.07.018.

    Article  CAS  Google Scholar 

  40. A.K.M. Muaz, U. Hashim, F. Ibrahim, K.L. Thong, M.S. Mohktar, and W.W. Liu, Microsyst. Technol. 22, 871 (2016). https://doi.org/10.1007/s00542-015-2514-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Afify.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afify, H.H., Asad, S.S., Badr, A.M. et al. Effect of Post-Heat Treatment on Physical Properties of Nanostructured TiO2 Powders Prepared by a Sol–Gel Method. J. Electron. Mater. 49, 1980–1992 (2020). https://doi.org/10.1007/s11664-019-07886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07886-0

Keywords

Navigation