Skip to main content
Log in

Investigation of the Factors Influencing the Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) is one of the most effective methods for applications in optical sensors and chemical analysis. However, control of the optimal conditions of substrates and the selection of chemical probes are two major challenges which have yet to be solved. In this work, using a simple seeded growth method, nanoparticles with different sizes and shapes were produced. The SERS enhancement factor for each nanoparticle size and shape obtained was evaluated based on three different analytes, methylene blue, Nile blue A and Rhodamine B. We found a maximum enhancement factor on the order of 106 for the case of silver nanorods and Rhodamine B. Considering the SERS performance for silver nanospheres, we observed a systematic increase in the sequence methylene blue-Nile blue A-Rhodamine B. The reason behind the enhanced efficiency is that the maximum of the surface plasmon resonance band of Rhodamine B is the closest to the Raman excitation wavelength. The study also demonstrates that a decrease in size of spherical nanoparticles can lead to an increased enhancement, resulting from a larger surface area for a smaller particle size. Compared with silver nanospheres, silver nanorods yielded a better SERS enhancement factor, as a result of shape anisotropy which significantly enhance the local field hotspots. For low concentration, the intensity of Raman bands increases linearly with increasing dye concentration, which could be useful for applications involving chemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Guillot and M.L. de la Chapelle, J. Quant. Spectrosc. Radiat. Transf. 113, 2321 (2012).

    Article  CAS  Google Scholar 

  2. H. Gehan, L. Fillaud, M.M. Chehimi, J. Aubard, A. Hohenau, N. Felidj, and C. Mangeney, ACS Nano 4, 6491 (2010).

    Article  CAS  Google Scholar 

  3. E.C. Le Ru, P.G. Etchegoin, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, and J.R. Krenn, Curr. Appl. Phys. 8, 467 (2008).

    Article  Google Scholar 

  4. E.C. Le Ru, J. Grand, I. Sow, W.R.C. Somerville, P.G. Etchegoin, M.T. Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, Nano Lett. 11, 5013 (2011).

    Article  Google Scholar 

  5. G. McNay, D. Eustace, W.E. Smith, K. Faulds, and D. Graham, Appl. Spectrosc. 65, 825 (2011).

    Article  CAS  Google Scholar 

  6. B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, and R.P. Van Duyne, Mater. Today 15, 16 (2012).

    Article  CAS  Google Scholar 

  7. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).

    Article  CAS  Google Scholar 

  8. S. Schlücker, ChemPhysChem 10, 1344 (2009).

    Article  Google Scholar 

  9. A. Merlen, F. Lagugné-Labarthet, and E. Harté, J. Phys. Chem. C 114, 12878 (2010).

    Article  CAS  Google Scholar 

  10. T.C. Dao, T.Q.N. Luong, T.A. Cao, N.H. Nguyen, N.M. Kieu, T.T. Luong, and V.V. Le, Adv. Nat. Sci. Nanosci. 6, 035012 (2015).

    Article  Google Scholar 

  11. M. Nguyen, A. Kanaev, X. Sun, E. Lacaze, S. Lau-Truong, A. Lamouri, J. Aubard, N. Felidj, and C. Mangeney, Langmuir 31, 12830 (2015).

    Article  CAS  Google Scholar 

  12. M. Nguyen, I. Kherbouche, M. Braik, A. Belkhir, L. Boubekeur-Lecaque, J. Aubard, C. Mangeney, and N. Felidj, ACS Omega 4, 1144 (2019).

    Article  CAS  Google Scholar 

  13. G. Laurent, N. Félidj, S.L. Truong, J. Aubard, G. Lévi, J.R. Krenn, A. Hohenau, A. Leitner, and F.R. Aussenegg, Nano Lett. 5, 253 (2004).

    Article  Google Scholar 

  14. G. Laurent, N. Félidj, J. Grand, J. Aubard, G. Lévi, A. Hohenau, F. Aussenegg, and J. Krenn, Phys. Rev. B Condens. Matter 73, 245417 (2006).

    Article  Google Scholar 

  15. N. Félidj, G. Laurent, J. Grand, J. Aubard, G. Lévi, A. Hohenau, F.R. Aussenegg, and J.R. Krenn, Plasmonics 1, 35 (2006).

    Article  Google Scholar 

  16. M.T.T. Nguyen, D.H. Nguyen, M.T. Pham, H.V. Pham, and C.D. Huynh, J. Electron. Mater. 48, 4970 (2019).

    Article  CAS  Google Scholar 

  17. M. Fleischmann, P.J. Hendra, and A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).

    Article  CAS  Google Scholar 

  18. D.L. Jeanmaire and R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).

    Article  CAS  Google Scholar 

  19. L. Guerrini, J.V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, Anal. Chem. 81, 1418 (2009).

    Article  CAS  Google Scholar 

  20. G.-N. Xiao and S.-Q. Man, Chem. Phys. Lett. 447, 305 (2007).

    Article  CAS  Google Scholar 

  21. E.C. Le Ru, M. Dalley, and P.G. Etchegoin, Curr. Appl. Phys. 6, 411 (2006).

    Article  Google Scholar 

  22. C.R. Rekha, V.U. Nayar, and K.G. Gopchandran, J. Sci. Adv. Mater. Dev. 3, 196 (2018).

    Google Scholar 

  23. P.A. Mosier-Boss, Nanomaterials 7, 142 (2017).

    Article  Google Scholar 

  24. M.T.T. Nguyen, C. Mangeney, and N. Felidj, Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 035013 (2018).

    Article  Google Scholar 

  25. R.X. He, R. Liang, P. Peng, and Y.N. Zhou, J. Nanopart. Res. 19, 267 (2017).

    Article  Google Scholar 

  26. N.D. Israelsen, C. Hanson, and E. Vargis, Sci. World J. 2015, 124582 (2015).

    Google Scholar 

  27. C.L. Haynes and R.P. Van Duyne, J. Phys. Chem. B 107, 7426 (2003).

    Article  CAS  Google Scholar 

  28. M. Oćwieja, Z. Adamczyk, M. Morga, and K. Kubiak, Adv. Colloid Interface Sci. 222, 530 (2015).

    Article  Google Scholar 

  29. C.L. Brosseau, A. Gambardella, F. Casadio, C.M. Grzywacz, J. Wouters, and R.P. Van Duyne, Anal. Chem. 81, 3056 (2009).

    Article  CAS  Google Scholar 

  30. H. Masuhara, S. Kawata, and F. Tokunaga, Nano Biophotonics: Science and Technology (Amsterdam: Elsevier, 2007).

    Google Scholar 

  31. C.H. Sun, M.L. Wang, Q. Feng, W. Liu, and C.X. Xu, Russ. J. Phys. Chem. A 89, 291 (2015).

    Article  CAS  Google Scholar 

  32. C. Li, Y. Huang, K. Lai, B.A. Rasco, and Y. Fan, Food Control 65, 99 (2016).

    Article  CAS  Google Scholar 

  33. I. Ros, T. Placido, V. Amendola, C. Marinzi, N. Manfredi, R. Comparelli, M. Striccoli, A. Agostiano, A. Abbotto, D. Pedron, R. Pilot, and R. Bozio, Plasmonics 9, 581 (2014).

    Article  CAS  Google Scholar 

  34. M.D. Malinsky, K.L. Kelly, G.C. Schatz, and R.P. Van Duyne, J. Am. Chem. Soc. 123, 1471 (2001).

    Article  CAS  Google Scholar 

  35. N. Félidj, S.L. Truong, J. Aubard, G. Lévi, J.R. Krenn, A. Hohenau, A. Leitner, and F.R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).

    Article  Google Scholar 

  36. J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, Plasmonics 5, 161 (2010).

    Article  CAS  Google Scholar 

  37. T. Itoh, K. Hashimoto, Y. Kikkawa, A. Ikehata, and Y. Ozaki, Handai Nanophotonics, ed. S. Kawata and H. Masuhara (Amsterdam: Elsevier, 2006)

    Google Scholar 

  38. F. Tian, F. Bonnier, A. Casey, A.E. Shanahan, and H.J. Byrne, Anal. Methods 6, 9116 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2016.24.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Van Pham or Mai Thi Tuyet Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, L.T., Pham, H.V. & Nguyen, M.T.T. Investigation of the Factors Influencing the Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles. J. Electron. Mater. 49, 1864–1871 (2020). https://doi.org/10.1007/s11664-019-07870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07870-8

Keywords

Navigation