Skip to main content

Dielectric Properties and AC Conductivity of Organic Films of Copper(II) 2,9,16,23-Tetra-tert-butyl-29H,31H- phthalocyanine

Abstract

Copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuTTBPc) thin films have been obtained using a physical vapor deposition technique. X-ray diffraction analysis confirmed their amorphous nature. The dielectric constant and electrical conductivity were measured over the frequency range from 50 Hz to 8 MHz and temperature range from 293 K to 393 K. The dependence of the dielectric relaxation spectra on frequency at different temperatures was measured and discussed. In addition, the spectral dynamics of both the real and imaginary parts of the complex electric modulus over a wide temperature range is explained. The activation energy of the relaxation process (ΔEM) was estimated to be 0.26 eV. Moreover, the dependence of the alternating current conductivity on both temperature and frequency was investigated. Additionally, the exponent (s) of the power law of conductivity versus temperature confirmed that the correlated barrier hopping (CBH) model is a successful and appropriate mechanism to explain the charge transportation inside CuTTBPc films. According to this model, the density of localized states N(EF) at room temperature and frequency of 500 kHz was evaluated to be 4.11 × 1023 eV−1 cm−3. This high density of electron states indicates that CuTTBPc can be recommended as a candidate material for use in solar cells.

References

  1. N. Bouazizia, S. Louhichia, R. Ouarglic, R. Bargouguid, J. Vieillard, F. Le Derfa, and A. Azzouze, Appl. Surf. Sci. 404, 146 (2017).

    Article  Google Scholar 

  2. N. Bouazizi, F. Ajala, A. Bettaibi, M. Khelil, A. Benghnia, R. Bargougu, S. Louhichi, L. Labiadh, R. Ben Slama, B. Chaouachi, K. Khiroun, A. Houas, and A. Azzouz, J. Alloys Compd. 656, 146 (2016).

    CAS  Article  Google Scholar 

  3. T. An, W. Gong, and J. Ma, Org. Electron. 67, 320 (2019).

    CAS  Article  Google Scholar 

  4. M.M. El-Nahass and K.F. AbdEl-Rahman, J. Alloys Compd. 430, 194 (2007).

    CAS  Article  Google Scholar 

  5. S.I. Qashou, A.A.A. Darwish, and S.E. Al Garni, Synth. Met. 242, 67 (2018).

    CAS  Article  Google Scholar 

  6. A.A.A. Darwish, S.I. Qashou, Z. Khattari, M.M. Hawamdeh, A. Aldrabee, and S.E. Al Garni, J. Electron. Mater. 47, 7196 (2018).

    CAS  Article  Google Scholar 

  7. I.M. Soliman, M.M. El-Nahass, and Y. Mansour, Solid State Commun. 225, 17 (2016).

    CAS  Article  Google Scholar 

  8. Z.T. Deng, H.M. Guo, W. Guo, L. Gao, Z.H. Cheng, D.X. Shi, and H.-J. Gao, J. Phys. Chem. C 113, 11223 (2009).

    CAS  Article  Google Scholar 

  9. R.D. Gould and A.K. Hassan, Thin Solid Films 223, 334 (1993).

    CAS  Article  Google Scholar 

  10. M.M. El-Nahass, E.F.M. El-Zaidia, A.A.A. Darwish, and G.F. Salem, J. Electron. Mater. 46, 1093 (2017).

    CAS  Article  Google Scholar 

  11. J.W. Perry, K. Mansour, I.-Y.S. Lee, X.-L. Wu, P.V. Bedworth, C.-T. Chen, D. Ng, S.R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, Science 273, 1533 (1996).

    CAS  Article  Google Scholar 

  12. A.A.A. Darwish, S.I. Qashou, and M. Rashad, Appl. Phys. A 125, 271 (2019).

    Article  Google Scholar 

  13. A.A.A. Darwish, E.F.M. El-Zaidia, M.M. El-Nahass, T.A. Hanafy, and A.A. Al-Zubaidi, J. Alloys Compd. 589, 393 (2014).

    CAS  Article  Google Scholar 

  14. S.I. Qashou, M. Rashad, A.Z. Mahmoud, and A.A.A. Darwish, Vacuum 162, 199 (2019).

    CAS  Article  Google Scholar 

  15. S.I. Qashou, A.A.A. Darwish, M. Rashad, and Z. Khattari, Phys. B 525, 159 (2017).

    CAS  Article  Google Scholar 

  16. N. Bouazizi, R. Bargougui, A. Benghnia, J. Vieillard, S. Ammar, and A. Azzouz, RSC Adv. 6, 95405 (2016).

    CAS  Article  Google Scholar 

  17. Matthias Kaes and Martin Salinga, Sci. Rep. 6, 31699 (2016).

    CAS  Article  Google Scholar 

  18. D. Yokoyama, J. Mater. Chem. 21, 9187 (2011).

    Article  Google Scholar 

  19. A.P. Kulkarni, C.J. Tonzola, A. Babel, and S.A. Jenekhe, Chem. Mater. 16, 4556 (2004).

    CAS  Article  Google Scholar 

  20. Y. Shirota and H. Kageyama, Chem. Rev. 107, 953 (2007).

    CAS  Article  Google Scholar 

  21. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, Adv. Mater. 23, 926 (2011).

    CAS  Article  Google Scholar 

  22. R.P. Jebin, T. Suthan, N.P. Rajesh, and G. Vinitha, Opt. Laser Technol. 115, 500 (2019).

    CAS  Article  Google Scholar 

  23. X. Li, W. Xua, Y. Zhang, D. Xub, G. Wanga, and Z. Jianga, RSC Adv. 5, 51542 (2015).

    CAS  Article  Google Scholar 

  24. S.I. Qashou, A.A.A. Darwish, S.R. Alharbi, S.E. Al Garni, and T.A. Hanafy, J. Mater. Sci: Mater. Electron. 28, 14252 (2017).

    CAS  Google Scholar 

  25. S. Zhong, J.Q. Zhong, A.T.S. Wee, and W. Chen, J. Electron Spectrosc. Relat. Phenom. 204, 12 (2015).

    CAS  Article  Google Scholar 

  26. R. Bargougui, N. Bouazizi, S. Ammar, and A. Azzouz, J. Electron. Mater. 46, 85 (2017).

    CAS  Article  Google Scholar 

  27. E.M. El-Menyawy, H.M. Zeyad, and M.M. El-Nahass, Solid State Sci. 12, 2182 (2010).

    CAS  Article  Google Scholar 

  28. F.S. Howell, R.A. Bose, P.B. Maced, and C.T. Moynihan, Phys. Chem. 78, 639 (1974).

    CAS  Article  Google Scholar 

  29. T.A. Abdel-Baset and A. Hassen, Phys. B 499, 24 (2016).

    CAS  Article  Google Scholar 

  30. A.A. Attia, H.S. Soliman, M.M. Saadeldin, and K. Sawaby, Synth. Met. 205, 139 (2015).

    CAS  Article  Google Scholar 

  31. M.M. El-Nahass and H.A.M. Ali, Solid State Commun. 152, 1084 (2012).

    CAS  Article  Google Scholar 

  32. YuA Vidadi, L.D. Rozenshtein, and E.A. Chistyakov, Sov. Phys. Solid State 11, 173 (1969).

    Google Scholar 

  33. S.A. James, A.K. Ray, and S. Silver, Phys. Status Solidi A 129, 435 (1992).

    CAS  Article  Google Scholar 

  34. A.O. Abu-Hilal, A.M. Saleh, and R.D. Gould, Mater. Chem. Phys. 94, 165 (2005).

    CAS  Article  Google Scholar 

  35. M.M. El-Nahass, A.A. Atta, M.A. Kamel, and S.Y. Huthaily, Vacuum 91, 14 (2013).

    CAS  Article  Google Scholar 

  36. N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, and A. Azzouz, J. Mater. Sci. Mater. Electron. 27, 11168 (2016).

    CAS  Article  Google Scholar 

  37. G. Singh, N. Goyal, G.S.S. Saini, and S.K. Tripathi, J. Non-Cryst. Solids 353, 1322 (2007).

    CAS  Article  Google Scholar 

  38. V. Modgil and V.S. Rangra, Phys. B 445, 14 (2014).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleem I. Qashou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darwish, A.A.A., Alharbi, S.R., Hawamdeh, M.M. et al. Dielectric Properties and AC Conductivity of Organic Films of Copper(II) 2,9,16,23-Tetra-tert-butyl-29H,31H- phthalocyanine. J. Electron. Mater. 49, 1787–1793 (2020). https://doi.org/10.1007/s11664-019-07869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07869-1

Keywords

  • Organic film
  • dielectric relaxation
  • electrical conductivity