Skip to main content

Effect of Cyclic Uniaxial Pressure in Pulse-Current Sintering on Microstructure of Bi2Te3-Based Thermoelectric Materials

Abstract

Various cyclic uniaxial pressure patterns have been applied to a powder of Bi0.4Sb1.6Te3 thermoelectric material during the pulse-current sintering process. The cyclic uniaxial pressure pattern (0 MPa to 100 MPa) was varied by changing the number of pressure cycles and the ratio of the pressing time to the time during which no pressure was applied (i.e., pressing time/pressureless time). Sintering was performed at 400°C for 10 min in vacuum. Electron backscattered diffraction analysis revealed that both the number of pressure cycles and the pressing time ratio strongly affected the microstructure of the sintered materials. Increasing the number of pressure cycles led to a monotonic increase in the intensity of the c-plane orientation. Increasing the pressing time ratio also enhanced the intensity of the c-plane orientation, although the intensity of the c-plane orientation decreased at larger pressing time ratios. These results indicate that constant pressure and pressureless sintering are not effective for attaining c-plane orientation and that the cyclic uniaxial pressure pattern is important for controlling the microstructure of the sintered material. Consequently, the thermoelectric properties of sintered materials could be enhanced by varying the cyclic uniaxial pressure pattern.

This is a preview of subscription content, access via your institution.

References

  1. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    CAS  Article  Google Scholar 

  2. Z.A. Munir, D.V. Quach, and M. Ohyanagi, J. Am. Ceram. Soc. 94, 1 (2011).

    CAS  Article  Google Scholar 

  3. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng. R 63, 127 (2009).

    Article  Google Scholar 

  4. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, Adv. Eng. Mater. 16, 830 (2014).

    CAS  Article  Google Scholar 

  5. R. Murugasami, P. Vivekanandhan, S. Kumaran, R. Suresh Kumar, and T. John Tharakan, J. Alloys Compd. 773, 752 (2019).

    CAS  Article  Google Scholar 

  6. M. Aminzare, Y. Tseng, and Y. Mozharivskyj, J. Solid State Chem. 269, 434 (2019).

    CAS  Article  Google Scholar 

  7. B. Srinivasan, C. Boussard-Pledel, and B. Bureau, Mater. Lett. 230, 191 (2018).

    CAS  Article  Google Scholar 

  8. N. Liu, W.A. Jensen, M. Zebarjadi, and J.A. Floro, Mater. Today Phys. 4, 19 (2018).

    Article  Google Scholar 

  9. A. Novitskii, G. Guélou, D. Moskovskikh, A. Voronin, E. Zakharova, L. Shvanskaya, A. Bogach, A. Vasiliev, V. Khovaylo, and T. Mori, J. Alloys Compd. 785, 96 (2019).

    CAS  Article  Google Scholar 

  10. H. Kitagawa, K. Nagao, N. Mimura, S. Morito, and K. Kikuchi, J. Electron. Mater. 43, 1574 (2014).

    CAS  Article  Google Scholar 

  11. H. Kitagawa, K. Takimura, S. Ido, S. Morito, K. Kikuchi, J. Alloys Compd. 692, 388 (2017).

    CAS  Article  Google Scholar 

  12. A. Suzuki, H. Kitagawa, S. Ido, A.H. Pham, T. Etoh, and K. Kikuchi, J. Alloys Compd. 742, 240 (2018).

    CAS  Article  Google Scholar 

  13. W.M. Yim and F.D. Rosi, Solid State Electron. 15, 1121 (1972).

    CAS  Article  Google Scholar 

  14. H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995),

    Google Scholar 

  15. T. Caillat, M. Carle, P. Pierrat, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 53, 1121 (1992).

    CAS  Article  Google Scholar 

  16. T. Caillat, L. Gailliard, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 54, 575 (1993).

    CAS  Article  Google Scholar 

  17. A. Vasil’ev, M. Yaprintsev, O. Ivanov, and E. Danshina, Solid State Sci. 84, 28 (2018).

    Article  Google Scholar 

  18. B. Min, S. Lim, S. Jung, G. Kim, B. Lee, S. Won, S. Kim, J. Rhyee, J. Kim, and S. Baek, J. Alloys Compd. 764, 261 (2018).

    CAS  Article  Google Scholar 

  19. H. Cho, J. Kim, S. Back, K. Ahn, J. Rhyee, and S. Park, J. Alloys Compd. 731, 531 (2018).

    CAS  Article  Google Scholar 

  20. Z. Wang, T. Akao, T. Onda, and Z. Chen, J. Alloys Compd. 663, 134 (2016).

    CAS  Article  Google Scholar 

  21. Y. Zhang, X. Jia, L. Deng, X. Guo, H. Sun, B. Liu, and H. Ma, J. Alloys Compd. 632, 514 (2015).

    CAS  Article  Google Scholar 

  22. Q. Lognoné, F. Gascoin, O.I. Lebedev, L. Lutterotti, S. Gascoin, and D. Chateigner, J. Am. Ceram. Soc. 97, 2038 (2014).

    Article  Google Scholar 

  23. A.J. Schwartz, M. Kumar, and B.L. Adams, eds., Electron Backscatter Diffraction in Materials Science (New York: Kluwer Academic/Plenum, 2000).

    Google Scholar 

  24. J.R. Wiese and L. Muldawer, J. Phys. Chem. Solids 15, 13 (1960).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayako Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Kitagawa, H., Hirayama, K. et al. Effect of Cyclic Uniaxial Pressure in Pulse-Current Sintering on Microstructure of Bi2Te3-Based Thermoelectric Materials. J. Electron. Mater. 49, 2832–2837 (2020). https://doi.org/10.1007/s11664-019-07867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07867-3

Keywords

  • Thermoelectric materials
  • bismuth antimony telluride
  • pulse-current sintering
  • microstructure