Electronic Structure, Mechanical and Magnetic Properties of the Quaternary Perovskites CaA3V4O12 (A = Mn, Fe, Co, Ni and Cu)

Abstract

Quaternary perovskites CaA3V4O12 (A = Mn, Fe, Co, Ni and Cu) have been studied theoretically using a generalized gradient approximation along with Hubbard potential (GGA + U) in the domain of density functional theory (DFT). A decrease in the lattice constants of these compounds is observed when going from CaMn3V4O12 to CaCu3V4O12 due to the increase in the number of electrons in the trending of the metals. Electron charge densities in different crystallographic planes show that the bonds between Ca–O, A/V–O and A–V are ionic, covalent and metallic, respectively. The electronic band structures show the metallic behavior of these compounds except that CaMn3V4O12 and CaFe3V4O12 are half-metals. The elastic moduli of these compounds indicate the hardness and increases in a sequence going from CaMn3V4O12 to CaCu3V4O12, and also reveal their ductile nature. The optimized energies in different magnetic phases and the post-DFT calculations confirm that CaMn3V4O12 and CaCo3V4O12 are anti-ferromagnetic, and CaFe3V4O12 and CaNi3V4O12 are ferromagnetic, whereas CaCu3V4O12 is a paramagnetic material. Based on the above properties, it is expected that these compounds are potential candidates for storage devices.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. Yi, A.J. Princep, Y. Guo, R.D. Johnson, D. Khalyavin, P. Manuel, A. Senyshyn, I.A. Presniakov, A.V. Sobolev, Y. Matsushita, M. Tanaka, A.A. Belik, and A.T. Boothroyd, Inorg. Chem. 54, 8012 (2015).

    CAS  Google Scholar 

  2. 2.

    Y.G. Zainulin, Inorg. Mater. 49, 721 (2013).

    CAS  Google Scholar 

  3. 3.

    G. Murtaza and I. Ahmad, Phys. B 406, 3222 (2011).

    CAS  Google Scholar 

  4. 4.

    Z. Zeng, M. Greenblatt, M.A. Subramanian, and M. Croft, Phys. Rev. Lett. 82, 3164 (1999).

    CAS  Google Scholar 

  5. 5.

    N.I. Kadyrova, G.S. Zakharova, and Y.G. Zainulin, Dokl. Chem. 392, 251 (2003).

    CAS  Google Scholar 

  6. 6.

    J. Yao, B. Deng, L.J. Sherry, A.D. McFarland, D.E. Ellis, R.P.V. Duyne, and J.A. Ibers, Inorg. Chem. 47, 2706 (2008).

    Google Scholar 

  7. 7.

    Y. Shimakava, Inorg. Chem. 47, 8562 (2008).

    Google Scholar 

  8. 8.

    S.V. Ovsyannikov, Y.G. Zainulin, N.I. Kadyrova, A.P. Tyutynnik, A.S. Semenova, and A.E. Karkin, Inorg. Chem. 52, 11703 (2013).

    CAS  Google Scholar 

  9. 9.

    S. Zhang, T. Saito, M. Mizumaki, W.T. Chen, T. Tohyama, and Y. Shimakawa, J. Am. Chem. Soc. 135, 6056 (2013).

    CAS  Google Scholar 

  10. 10.

    S. Zhang, T. Saito, W.T. Chen, M. Mizumaki, and Y. Shimakawa, Inorg. Chem. 52, 10610 (2013).

    CAS  Google Scholar 

  11. 11.

    M.R. Li, J.P. Hodges, M. Retuerto, Z. Deng, P.W. Stephens, M.C. Croft, X. Deng, G. Kotliar, J. Sánchez-Benítez, D. Walker, and M. Greenblatt, Chem. Mater. 28, 3148 (2016).

    CAS  Google Scholar 

  12. 12.

    K. Leinenweber, J. Linton, A. Navrotsky, Y. Fei, and J.B. Parise, Phys. Chem. Miner. 22, 251 (1995).

    CAS  Google Scholar 

  13. 13.

    J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, and A.W. Sleight, Chem. Mater. 16, 5223 (2004).

    CAS  Google Scholar 

  14. 14.

    N.I. Kadyrova, Y.G. Zainulin, A.P. Tyutynnik, N.V. Mel’nikova, and I.S. Ustinova, Inorg. Mater. 47, 1396 (2011).

    CAS  Google Scholar 

  15. 15.

    K. Shiro, I. Yamada, N. Ikeda, K. Ohgushi, M. Mizumaki, R. Takahashi, N. Nishiyama, T. Inoue, and T. Irifune, Inorg. Chem. 52, 1604 (2013).

    CAS  Google Scholar 

  16. 16.

    S.V. Ovsyannikov, E. Bykova, A. Pakhomova, D.P. Kozlenko, M. Bykov, S.E. Kichanov, N.V. Morozova, I.V. Korobeinikov, F. Wilhelm, A. Rogalev, A.A. Tsirlin, A.V. Kurnosov, Y.G. Zainulin, N.I. Kadyrova, A.P. Tyutyunnik, and L. Dubrovinsky, Inorg. Chem. 56, 6251 (2017).

    CAS  Google Scholar 

  17. 17.

    H.B. Rhee and W.E. Pickett, Phys. Rev. B 90, 205119 (2014).

    Google Scholar 

  18. 18.

    H. Shiraki, T. Saito, M. Azuma, and Y. Shimakawa, J. Phys. Soc. Jpn. 77, 0647051 (2008).

    Google Scholar 

  19. 19.

    D. Singh, Plane Wave Pseudo-Potential and LAPW Method (Bosten, Dortrecht, London: Kluwer Academic Publishers, 1994).

    Google Scholar 

  20. 20.

    P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: an augmented plane waves plus local orbitals program for calculating crystal properties, in WIEN2k 14.2 (Vienna, Austria: Institute of Physical and Theoretical Chemistry, Vienna University of Technology) (2001).

  21. 21.

    J.P. Perdew, K. Burka, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  22. 22.

    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

    CAS  Google Scholar 

  23. 23.

    Z. Ali, I. Khan, I. Ahmad, S. Naeem, H.A.R. Aliabad, S.J. Asadabadi, and D. Zhang, Phys. B 423, 16 (2013).

    CAS  Google Scholar 

  24. 24.

    J.P. Perdew and A. Zunger, Phys. Rev. B. 23, 5048 (1981).

    CAS  Google Scholar 

  25. 25.

    T. Charpin, A package for calculating elastic tensors of cubic phase using WIEN (Paris: Laboratory of Geometrix, 2001).

    Google Scholar 

  26. 26.

    B. Allen, Boltzmann theory and resistivity of metals, ed. J.R. Chelikowsky and S.G. Louie (Boston: Kluwer, 1996),

    Google Scholar 

  27. 27.

    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    CAS  Google Scholar 

  28. 28.

    F. Birch, Phys. Rev. 71, 809 (1947).

    CAS  Google Scholar 

  29. 29.

    G. Zhang, Y. Wang, Z. Cheng, Y. Yan, C. Peng, C. Wang, and S. Dong, Phys. Chem. Chem. Phys. 17, 12717 (2015).

    CAS  Google Scholar 

  30. 30.

    N.I. Kadyrova, Y.G. Zaynulin, A.P. Tyutyunnik, N.V. Melnikova, and A.A. Mirzorakhimov, Bull. Russ. Acad. Sci. Phys. 80, 620 (2016).

    CAS  Google Scholar 

  31. 31.

    N.I. Kadyrova, Y.G. Zaynulin, A.P. Tyutyunnik, D.G. Kellerman, and N.V. Melnikova, Russ. J. Inorg. Chem. 62, 103 (2017).

    CAS  Google Scholar 

  32. 32.

    A.L. Allred, Inorg. Nucl. Chem. 17, 215 (1961).

    CAS  Google Scholar 

  33. 33.

    W.J. Mortier, S.K. Ghosh, and S. Shankar, Am. Chem. Soc. 108, 4315 (1986).

    CAS  Google Scholar 

  34. 34.

    L.E. Brus, Chem. Phys. 79, 5566 (1983).

    CAS  Google Scholar 

  35. 35.

    A. Munoza, J.A. Alonsob, M.J.M. Lopeb, C.D.L. Calleb, and M.T.F. Diaz, J. Solid State Chem. 179, 3365 (2006).

    Google Scholar 

  36. 36.

    S. Mehmood, Z. Ali, I. Khan, and I. Ahmad, Mater. Chem. Phys. 196, 222 (2017).

    CAS  Google Scholar 

  37. 37.

    I. Yamada, K. Takata, N. Hayashi, S. Shinohara, M. Azuma, S. Mori, S. Muranaka, Y. Shimakawa, and M. Takano, Angew. Chem. Int. Ed. 47, 7032 (2008).

    CAS  Google Scholar 

  38. 38.

    W. Chen, J.H. Pohls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z.M. Gibbs, H. Zhu, M. Asta, G.J. Snyder, B. Meredig, M.A. White, K. Perssonand, and A. Jain, J. Mater. Chem. C. 4, 4414 (2016).

    CAS  Google Scholar 

  39. 39.

    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. Lett. 71, 4182 (1993).

    CAS  Google Scholar 

  40. 40.

    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. B 52, 12627 (1995).

    CAS  Google Scholar 

  41. 41.

    G. Sinko and N.A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002).

    CAS  Google Scholar 

  42. 42.

    W. Voigt, “Lehrbuch der Kristallphysik, Taubner”, Leipzig (New York: Springer, 1928).

    Google Scholar 

  43. 43.

    R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

    Google Scholar 

  44. 44.

    S.F. Pugh, Philos. Mag. 45, 823 (1954).

    CAS  Google Scholar 

  45. 45.

    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    CAS  Google Scholar 

  46. 46.

    K. Chen, L.R. Zhao, J. Rodgers, and J.S. Tse, Phys. D: Appl. Phys. 36, 2725 (2003).

    CAS  Google Scholar 

  47. 47.

    P.H. Mott, J.R. Dorgan, and C.M. Roland, J. Sound Vib. 312, 572 (2008).

    Google Scholar 

  48. 48.

    H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Comput. Mater. Sci. 44, 774 (2008).

    CAS  Google Scholar 

  49. 49.

    L. Kleinman, Phys. Rev. 128, 2614 (1962).

    CAS  Google Scholar 

  50. 50.

    L. Pal, F. Kren, G. Kadar, P. Szabo, and T. Tarnoczi, J. Appl. Phys. 39, 538 (1968).

    CAS  Google Scholar 

  51. 51.

    P.F. Ladwig, Y.A. Chang, E.S. Linville, A. Morrone, J. Gao, B.B. Pant, A.E. Schlutz, and S. Mao, J. Appl. Phys. 94, 979 (2003).

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Higher Education Commission of Pakistan (HEC), Project No. 10216/KPK/NRPU/R&D/HEC/2017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zahid Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, A., Ali, Z., Mehmood, S. et al. Electronic Structure, Mechanical and Magnetic Properties of the Quaternary Perovskites CaA3V4O12 (A = Mn, Fe, Co, Ni and Cu). Journal of Elec Materi 49, 1230–1242 (2020). https://doi.org/10.1007/s11664-019-07842-y

Download citation

Keywords

  • Quaternary perovskites
  • ab initio calculations
  • electronic properties
  • elastic properties
  • magnetic properties