Skip to main content
Log in

Graphene Nanoscroll Geometry Effect on Transistor Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene nanoscrolls (GNSs) with interesting geometry are ideal candidates for nanotechnology applications, particularly in nanoelectronics. Hence, in recent years, much attention has been paid to investigation of GNS applications owing to their remarkable properties. In this paper, a GNS-based Schottky transistors is analytically modeled. In the presented model the diverse arrangement of zigzag graphene nanoscrolls are assumed to form Schottky contacts. Based on the proposed design, the electronic parameters such as dispersion relation, density of states and effective mass by considering the effect of chirality number are investigated. As a main parameter, transmission probability is surveyed, and current–voltage characteristic under quantum tunneling effect is presented. Finally, the influences of barrier length, gate-source voltage and chirality number on I–V characteristics are explored. It is concluded that chirality number plays an important role compare to the other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Norouzi, R. Ahmadi, E. Norian, M.T. Ahmadi, and R. Ismail, J. Nanoelectron. Optoelectron. (2019). https://doi.org/10.1166/jno.2019.2606.

    Article  Google Scholar 

  2. R. Ahmadi, M.T. Ahmadi, and R. Ismail, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6285-7.

    Article  Google Scholar 

  3. M.R. Mananghaya, G.N. Santos, and D. Yu, Org. Electron. (2018). https://doi.org/10.1016/j.orgel.2018.09.031.

    Article  Google Scholar 

  4. M. Rahmani, H.G. Fard, M.T. Ahmadi, H. Habibiyan, S. Rahbarpour, and K. Rahmani, J. Comput. Electron. (2017). https://doi.org/10.1007/s10825-017-1018-3.

    Article  Google Scholar 

  5. X. Shi, N.M. Pugno, and H. Gao, GutiLixueXuebao. (2010). https://doi.org/10.1016/S0894-9166(11)60002-5.

    Article  Google Scholar 

  6. B. Jayasena, S. Subbiah, and C.D. Reddy, J. Micro Nano-Manuf. (2014). https://doi.org/10.1115/1.4026325.

    Article  Google Scholar 

  7. A. Hamzah, M.T. Ahmadi, and R. Ismail, Curr. Nanosci. (2015). https://doi.org/10.2174/1573413710999140918201702.

    Article  Google Scholar 

  8. R. Ismail, M.T. Ahmadi, and S. Anwar, Advanced Nanoelectronics (Boca Raton: CRC Press, 2016).

    Book  Google Scholar 

  9. M. Khaledian, R. Ismail, and E. Akbari, RSC Adv. (2016). https://doi.org/10.1039/c5ra27789b.

    Article  Google Scholar 

  10. H. Liu, T. Le, L. Zhang, and M. Xu, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0074-1.

    Article  Google Scholar 

  11. M. Hassanzadazar, M.T. Ahmadi, R. Ismail, and H. Goudarzi, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-4684-1.

    Article  Google Scholar 

  12. M.F. Craciun, S. Russo, M. Yamamoto, J.B. Oostinga, A.F. Morpurgo, and S. Tarucha, Nat. Nanotechnol. (2009). https://doi.org/10.1038/nnano.2009.89.

    Article  Google Scholar 

  13. A. Javey, R. Tu, D.B. Farmer, J. Guo, R.G. Gordon, and H. Dai, Nano Lett. (2005). https://doi.org/10.1021/nl047931j.

    Article  Google Scholar 

  14. Y. Chen, J. Lu, and Z. Gao, J. Phys. Chem. C (2007). https://doi.org/10.1021/jp066030r.

    Article  Google Scholar 

  15. M. Rahmani, M.T. Ahmadi, H.K.F. Abadi, M. Saeidmanesh, E. Akbari, and R. Ismail, Nanoscale Res. Lett (2013). https://doi.org/10.1186/1556-276X-8-55.

    Article  Google Scholar 

  16. H. Karimi, M.T. Ahmadi, E. Khosrowabadi, R. Rahmani, M. Saeidimanesh, R. Ismail, S.D. Naghib, and E. Akbari, RSC Adv (2014). https://doi.org/10.1039/c3ra47432a.

    Article  Google Scholar 

  17. M.T. Ahmadi, Z. Johari, N.A. Amin, A.H. Fallahpour, and R. Ismail, J. Nanomater. (2010). https://doi.org/10.1155/2010/753738.

    Article  Google Scholar 

  18. M. Khaledian, R. Ismail, M. Saeidmanesh, M.T. Ahmadi, and E. Akbari, J. Nanomater. (2014). https://doi.org/10.1155/2014/762143.

    Article  Google Scholar 

  19. A.F.J. Levi, Applied Quantum Mechanics (Cambridge: Cambridge University Press, 2006).

    Book  Google Scholar 

  20. D.A. Neamen, Semiconductor Physics and Devices, 3rd ed. (New York: McGraw-Hill, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The main idea has been suggested by Dr. M.T. Ahmadi which is been modelled by Ramin Ahmadi. In the final form, the results were discussed and supported by Dr. Truong Khang Nguyen.

Corresponding author

Correspondence to Mohammad Taghi Ahmadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M.T., Ahmadi, R. & Nguyen, T.K. Graphene Nanoscroll Geometry Effect on Transistor Performance. J. Electron. Mater. 49, 544–550 (2020). https://doi.org/10.1007/s11664-019-07801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07801-7

Keywords

Navigation