Skip to main content

Transfer of P-type to N-type Thermoelectric Properties of Ag-Sb-Te Thin Film Through Temperature Annealing and Its Electrical Power Generation

Abstract

Ag-Sb-Te (AST) thin film was successfully fabricated on a flexible polyimide substrate by using DC magnetron sputtering from the AgSbTe (AST) target. As-deposited samples were annealed at temperatures between 300 and 450°C under vacuum for 30 min. Then, uni-leg AST thin film thermoelectric modules of five elements were fabricated. Thermal annealing induced a change of thermoelectric characteristic of the thin film from p-type material (300–350°C) to n-type material (400–450°C) through the change in structures (amorphous to crystalline, atomic composition ratio and surface roughness, etc.). The highest power factor was 0.97 mW m−1 K−2 and 0.065 mW m−1 K−2 for p-type and n-type, respectively. The maximum power generation of the uni-leg AST thin film thermoelectric module was approximately 0.88 nW for p-type and 0.54 nW for n-type, with a temperature difference of around 20 K.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. Quinn, Nature 413, 597 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    R. Ahısk and H. Mamur, Int. J. Renew. Energ. Res. 4, 128 (2014).

    Google Scholar 

  3. 3.

    A. Weidenkaff, EPJ Web of Conferences, vol. 148 (2017), p. 00010.

  4. 4.

    A. Vora-ud, M. Horprathum, M. Kumar, P. Muthitamongkol, C. Chananonnwathorn, B. Saekow, I. Nualkham, S. Thaowonkaew, C. Thanachayanont, and T. Seetawan, Mater. Lett. 234, 229 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    J.J. Xu, H. Li, B.L. Du, X.F. Tang, Q.J. Zhang, and C. Uher, J. Mater. Chem. 20, 6138 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, Jpn. J. Appl. Phys. 39, 770 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    T. Maeda, M. Terao, and T. Shimano, Jpn. J. Appl. Phys. 42, 1044 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    J. Xu, B. Liu, Z. Song, S. Feng, and B. Chen, Mater. Sci. Eng. B 127, 228 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    B. Du, H. Li, J. Xu, X. Tang, and C. Uher, Chem. Mater. 22, 5521 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    J. Zhang, X. Qin, D. Li, C. Song, Y. Liu, H. Xin, T. Zou, and Y. Li, Electron. Mater. Lett. 11, 133 (2015).

    Article  Google Scholar 

  11. 11.

    J. Kim, J.Y. Lee, J.H. Lim, and N.V. Myung, Electrochim. Acta 196, 579 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    M. Salimi and S. Javad Hashemifar, J. Alloys Compd. 650, 143 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    L.-H. Ye, K. Hoang, A.J. Freeman, S.D. Mahanti, J. He, T.M. Tritt, and M.G. Kanatzidis, Phys. Rev. B 77, 245203 (2008).

    Article  Google Scholar 

  14. 14.

    K. Wojciechowski, J. Tobola, M. Schmidt, and R. Zybala, J. Phys. Chem. Solids 69, 2748 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    V. Jovovic and J. Heremans, Phys. Rev. B 77, 245204 (2008).

    Article  Google Scholar 

  16. 16.

    H. Ma, T. Su, P. Zhu, J. Guo, and X. Jia, J. Alloys Compd. 454, 415 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    H. Wang, J.-F. Li, M. Zou, and T. Sui, Appl. Phys. Lett. 93, 202106 (2008).

    Article  Google Scholar 

  18. 18.

    S.N. Zhang, T.J. Zhu, S.H. Yang, C. Yu, and X.B. Zhao, J. Alloys Compd. 499, 215 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    J. Xu, H. Li, B. Du, X. Tang, Q. Zhang, and C. Uher, J. Mater. Chem. 20, 6138 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Z.H. Zheng, J.T. Luo, T.B. Chen, X.H. Zhang, G.X. Liang, and P. Fan, Appl. Phys. Lett. 112, 163901 (2018).

    Article  Google Scholar 

  21. 21.

    P. Wanarattikan, P. Jitthammapirom, R. Sakdanuphab, and A. Sakulkalavek, Adv. Mater. Sci. Eng. 2019, 6954918 (2019).

    Article  Google Scholar 

  22. 22.

    A. Vora-ud, M. Horprathum, M. Kumar, P. Muthitamongkol, C. Chananonnawathorn, B. Saekow, I. Nualkham, S. Thaowonkaew, C. Thanachayanont, and T. Seetawan, Mater. Lett. 234, 229 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press, 2007).

    Book  Google Scholar 

  24. 24.

    U. Shinde, Adv. Appl. Sci. Res. 8, 55 (2017).

    CAS  Google Scholar 

  25. 25.

    D. Morelli, V. Jovovic, and J. Heremans, Phys. Rev. Lett. 101, 035901 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Research Council of Thailand (NRCT) and Thailand Research Fund (TRF) through Research Career Development Grant (RSA6180070) and the TRF-MRG Young Scientific Researcher (Grant No. 251 MRG6180007). This study was also partially supported by Vietnam National University Ho Chi Minh City to Center for Innovative Materials and Architectures (INOMAR) under grant number NCM2019-50-01.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Athorn Vora-ud or Tosawat Seetawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prainetr, N., Vora-ud, A., Horprathum, M. et al. Transfer of P-type to N-type Thermoelectric Properties of Ag-Sb-Te Thin Film Through Temperature Annealing and Its Electrical Power Generation. Journal of Elec Materi 49, 572–577 (2020). https://doi.org/10.1007/s11664-019-07756-9

Download citation

Keywords

  • Flexible thin film thermoelectric
  • Ag-Sb-Te thin films
  • DC magnetron sputtering