Skip to main content

Preparation and Characterization of Ni/Bi0.5Sb1.5Te3 Heterogeneous Multilayered Thermoelectric Materials

Abstract

It is difficult to achieve coordinated optimization in thermoelectric materials due to the strong coupling between the electrical and thermal transport properties. However, interface effects, especially those caused by heterogeneous interfaces, are promising to overcome this challenge. In this work, the Ni/Bi0.5Sb1.5Te3 (BST) heterogeneous multilayer structure thermoelectric materials were fabricated by the combination of vacuum evaporation deposition and spark plasma sintering. The influence of Ni layer on the phase composition, microstructure and thermoelectric performance along the different directions (0°, 30°, 60° and 90°, the angles between the performance measurement direction and the Ni layer) of Ni/BST materials were systematically investigated. The microstructural analysis indicates that the distinct heterogeneous interfaces were firmly bonded, and the interface reaction layer was composed of Ni and Te. As compared with the matrix, the electrical conductivity and Seebeck coefficient of the Ni/BST heterogeneous multilayer thermoelectric materials increased, and the thermal conductivity slightly reduced. For Ni/BST90° sample, the maximum ZT value of 1.05 was achieved at 370 K, increased by 19.1% compared with the BST90°. Our work demonstrates that the electron and phonon transport properties can be simultaneously optimized by introducing the ordered heterogeneous interfaces.

References

  1. L.E. Bell, Science 321, 1457–1461 (2008).

    CAS  Article  Google Scholar 

  2. F.J. Disalvo, Science 285, 703–706 (1999).

    CAS  Article  Google Scholar 

  3. S. Sharma, V.K. Dwivedi, and S.N. Pandit, Int. J. Green Energy 11, 899–909 (2014).

    Article  Google Scholar 

  4. M. Jonson and G.D. Mahan, Phy. Rev. B 21, 4223–4229 (1980).

    CAS  Article  Google Scholar 

  5. Z. Chen, X. Zhang, and Y. Pei, Adv. Mater. 30, 1–16 (2018).

    Google Scholar 

  6. J.P. Heremans, Nat. Phys. 11, 990–991 (2015).

    CAS  Article  Google Scholar 

  7. S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, and G. Chen, Nat. Commun. 5, 1–8 (2014).

    Google Scholar 

  8. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414–418 (2012).

    CAS  Article  Google Scholar 

  9. Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66–69 (2011).

    CAS  Article  Google Scholar 

  10. Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125–6135 (2012).

    CAS  Article  Google Scholar 

  11. L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Science 351, 141–144 (2016).

    CAS  Article  Google Scholar 

  12. W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, and X. Tang, J. Am. Chem. Soc. 131, 3713–3720 (2009).

    CAS  Article  Google Scholar 

  13. W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, and J. Shi, Nature 549, 247–251 (2017).

    CAS  Article  Google Scholar 

  14. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, and X. Zhao, Adv. Mater. 29, 1–26 (2017).

    Google Scholar 

  15. S. Nakajima, J. Phys. Chem. Solids 24, 479–485 (1962).

    Article  Google Scholar 

  16. M.C.T. Caillat, P. Pierrat, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 53, 1121–1129 (1992).

    CAS  Article  Google Scholar 

  17. J.J. Shen, L.P. Hu, T.J. Zhu, and X.B. Zhao, Appl. Phys. Lett. 99, 1–3 (2011).

    Google Scholar 

  18. W. Xie, J. He, S. Zhu, T. Holgate, S. Wang, X. Tang, Q. Zhang, and T.M. Tritt, J. Mater. Res. 26, 1791–1799 (2011).

    CAS  Article  Google Scholar 

  19. D. Liu, X. Li, P.M. Borlido, S. Botti, R. Schmechel, and M. Rettenmayr, Sci. Rep. 7, 1–13 (2017).

    Article  Google Scholar 

  20. P.J. Taylor, J.R. Maddux, W.A. Jesser, and F.D. Rosi, J. Appl. Phys. 85, 7807–7813 (1999).

    CAS  Article  Google Scholar 

  21. D. Li, X.Y. Qin, J. Zhang, C.J. Song, Y.F. Liu, L. Wang, H.X. Xin, and Z.M. Wang, RSC Advances 5, 43717–43722 (2015).

    CAS  Article  Google Scholar 

  22. D. Kenfaui, B. Lenoir, D. Chateigner, B. Ouladdiaf, M. Gomina, and J.G. Noudem, J. Eur. Ceram. Soc. 32, 2405–2414 (2012).

    CAS  Article  Google Scholar 

  23. D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226–235 (2009).

    CAS  Article  Google Scholar 

  24. Y. Yang, S.H. Xie, F.Y. Ma, and J.Y. Li, J. Appl. Phys. 111, 1–7 (2012).

    Google Scholar 

  25. S. Li, X. Liu, Y. Liu, F. Liu, J. Luo, and F. Pan, Nano Energy 39, 297–305 (2017).

    CAS  Article  Google Scholar 

  26. Y.C. Tseng, H. Lee, N.Y. Hau, S.P. Feng, and C.M. Chen, J. Electron. Mater. 47, 27–34 (2017).

    Article  Google Scholar 

  27. W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, J. Mater. Chem. A 1, 13093–13100 (2013).

    CAS  Article  Google Scholar 

  28. W.P. Lin, D.E. Wesolowski, and C.C. Lee, J. Mater. Sci.: Mater. Electron. 22, 1313–1320 (2011).

    CAS  Google Scholar 

  29. W.H. Chao, Y.R. Chen, S.C. Tseng, P.H. Yang, R.J. Wu, and J.Y. Hwang, Thin Solid Films 570, 172–177 (2014).

    CAS  Article  Google Scholar 

  30. Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 92, 1–3 (2008).

    Google Scholar 

  31. Y.P. Yadava and R.A. Singh, J. Mater. Sci. Lett. 4, 1421–1424 (1985).

    CAS  Article  Google Scholar 

  32. R.A. Howe, J.E. Enderby, and R.J. Newport, J. Phys. C: Solid State Phys. 15, 4635–4640 (1981).

    Google Scholar 

  33. T.A. By, R.J. Bither, W.H. Bouchard, P. Cloud, C. Dokohue, and A.W.J. Siemoks, Inorg. Chem. 7, 2208–2220 (1968).

    Article  Google Scholar 

  34. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Materials 3, 1–5 (2015).

    Article  Google Scholar 

  35. X. Mu, H.Y. Zhou, D.Q. He, W.Y. Zhao, P. Wei, W.T. Zhu, X.L. Nie, H.J. Liu, and Q.J. Zhang, Nano Energy 33, 55–64 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11834012, 51620105014, 51572210, 51521001) and the National Key R&D Program of China (Grant No. 2018YFB0703603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanting Zhu or Wenyu Zhao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhu, W., Xing, L. et al. Preparation and Characterization of Ni/Bi0.5Sb1.5Te3 Heterogeneous Multilayered Thermoelectric Materials. J. Electron. Mater. 49, 2689–2697 (2020). https://doi.org/10.1007/s11664-019-07745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07745-y

Keywords

  • Ni
  • Bi0.5Sb1.5Te3
  • multilayered
  • heterogeneous interface